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Abstract—This paper proposes a novel machine-learning ap-
proach for predicting AC-OPF solutions that features a fast
and scalable training. It is motivated by the two critical con-
siderations: (1) the fact that topology optimization and the
stochasticity induced by renewable energy sources may lead to
fundamentally different AC-OPF instances; and (2) the significant
training time needed by existing machine-learning approaches
for predicting AC-OPF. The proposed approach is a 2-stage
methodology that exploits a spatial decomposition of the power
network that is viewed as a set of regions. The first stage
learns to predict the flows and voltages on the buses and lines
coupling the regions, and the second stage trains, in parallel, the
machine-learning models for each region. Experimental results
on the French transmission system (up to 6,700 buses and 9,000
lines) demonstrate the potential of the approach. Within a short
training time, the approach predicts AC-OPF solutions with
very high fidelity and minor constraint violations, producing
significant improvements over the state-of-the-art. The results
also show that the predictions can seed a load flow optimization to
return a feasible solution within 0.03% of the AC-OPF objective,
while reducing running times significantly.

Index Terms—Optimal Power Flow; Machine Learning; Neu-
ral Networks; Network Decomposition;

I. INTRODUCTION

The AC Optimal Power Flow (AC-OPF) problem is at the
core of modern power system operations. It determines the
least-cost generation dispatch that meets the demand of the
power grid subject to engineering and physical constraints.
It is non-convex and NP-hard [1], and the basic block of
many applications, including security-constrained OPF [2],
[3], security-constrained unit commitment [4], optimal trans-
mission switching [5], capacitor placement [6], and expansion
planning [7], among others.

Machine learning has significant potential for real-time AC-
OPF applications for a variety of reasons [8]. A machine-
learning model can leverage large amount of historical data
and deliver extremely fast approximations (compared to an
AC-OPF solver). Recent work (e.g., [9], [8]) has indeed
shown that machine-learning approaches can predict AC-OPF
with high fidelity and minimal constraint violations, using
a combination of neural networks and Lagrangian duality.
However, the training times and memory requirements of these
machine-learning models can be quite significant, which limits
their potential applications. Indeed, topology optimization and
the stochasticity induced by renewable energy sources may
lead to fundamentally different AC-OPF instances and it is
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unlikely that these approaches would scale to accommodate
the wide variety of input configurations encoutered in practice.

This paper explores a fundamentally different avenue: It
seeks a scalable machine-learning approach for predicting AC-
OPF solutions that can be trained quickly. Such an approach
would make it possible to train a machine-learning model
quickly to accommodate a new topology or a significant
change in the capacity of renewable energy sources. It would
also open the possibility of training different machine-learning
models for different time periods.

To achieve this goal, the paper proposes a 2-stage machine-
learning approach that exploits a spatial decomposition of
the power system. The power network is viewed as a set of
regions, the first stage learns to predict the flows and voltages
on the buses and lines coupling the regions, and the second
stage trains, in parallel, the machine-learning models for
each region. Experimental results on the French transmission
system (up to 6,700 buses and 9,000 lines) demonstrate the
potential of the approach. Within a short training time, the
approach predicts AC-OPF solutions with very high fidelity
and minor constraint violations, producing significant im-
provements over the state-of-the-art. The results also show that
the predictions can seed a load flow optimization to return a
feasible solution within 0.03% of the AC-OPF objective, while
reducing running times significantly.

To our knowledge, the proposed approach is the first dis-
tributed training algorithm for learning AC-OPF for large-
scale network topology. It builds on top, and significantly
extends, prior work [9], [8] combining machine learning and
Lagrangian duality. Most importantly, the 2-stage approach
significantly reduces the dimensionality of the learning task,
allows the training to be performed in parallel for each region,
and dramatically shortens training times, opening new avenues
for machine learning in very large-scale system operations.
It is also the first approach that can learn AC-OPF on an
actual, large-scale tranmission system fast, even on reasonable
hardware configurations.

II. RELATED WORK

Machine learning has attracted significant attention in the
power systems community: recent overviews of the various
approaches and applications can be found in [10], [11]. In the
context of AC-OPF, various approaches have been proposed
for learning the active set of constraints [12], [13], [14], [15],
[16], imitating the Newton-Raphson algorithm [17], or learn-
ing warm-start points for speeding-up the optimization process
[18], [19]. Several approaches aim to predict optimal dispatch
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Fig. 1: The OPF Formulation.

decisions [20], [21], [22] but these were limited to small-case
studies. In the context of DC-OPF, it is worth mentioning the
results of [23], [24] that provide formal guarantees on the
predictions of neural networks. The application of machine
learning to the security-constrained extension of the DC-OPF
is presented in [25], [26].

III. PRELIMINARIES

a) The AC Optimal Power Flow Problem: A power
network is modeled as an undirected graph (N , E) where N
and E are the set of buses and transmission lines. The set of
generators and loads are denoted by G and L. The goal of the
OPF is to determine the generator dispatch of minimal cost that
satisfies the load. The OPF constraints include engineering and
physical constraints. The OPF formulation is shown in Figure
1. The power flow equations are expressed in terms of complex
power of the form S=(p+jq), where p and q denote the active
and reactive powers, admittances of the form Y = (g+ jb),
where g and b denote the conductance and susceptance, and
voltages of the form V =(v∠θ), with magnitude v and phase
angle θ. The formulation uses vi, θi, p

g
i , and qgi to denote

the voltage magnitude, phase angle, active power generation,
reactive power generation at bus i. Moreover, pfij and qfij
denote the active and reactive power flows associated with
line (i, j). The OPF receives as input the demand vectors
pdi and qdi for each bus i. The objective function captures
the cost of the generator dispatch. Typically, ci(·) is a linear
or quadratic function. Constraints (2), (3r), and (3i) capture
operating bounds for the associated variables. The thermal
limit for line (i, j) is captured via constraint (4). Constraints
(5r) and (5i) capture Ohm’s Law. Constraints (6r) and (6i)
capture Kirchhoff’s Law.

b) Neural Network Architectures: Neural networks have
achieved tremendous success in approximating highly com-
plex, nonlinear mappings in various domains and applications.
A Neural Network (NN) consists of a series of layers, the
output of each layer being the input to the next layer. The NN
layers are often fully connected and the function connecting
the layers is given by o = π(Wx + b), where x ∈ Rn is

the input vector, o ∈ Rm the output vector, W ∈ Rm×n a
weight matrix, and b ∈ Rm a bias vector. The function π(·)
is non-linear (e.g., a rectified linear unit (ReLU)).

c) Notations: The cardinality of set X is denoted by |X |.
[N ] represents the set {1, 2, . . . , N}. Vectors are displayed
using bold letters and x = [x1, x2, ..., xn]>. The element-
wise lower (resp. upper) bound of the vector x is denoted
by x (resp. x). In learning algorithms, the prediction for x is
denoted by x̂.

IV. LEARNING AC-OPF

A. OPF Learning Goals

Given loads (pd, qd), the learning goal is to predict the
optimal control setpoints (pg, qg) of the generators, the bus
voltage v, and the phase angle difference ∆θ of the lines. This
task is equivalent to learning the complex, nonlinear, high-
dimensional mapping:

O : R2|L| → R|N |+|E|+2|G| (7)

which maps the loads onto an optimal AC-OPF solution. The
input to the learning task is a dataset

D = {(pd, qd)t, (v,∆θ,pg, qg)t}Tt=1

consisting of T instances specifying the inputs and outputs.

B. A Lagrangian Dual Model for Learning AC-OPF

One of the challenges of learning mapping O is the presence
of physical and engineering constraints. Ideally, given a NN
O[w] parameterized by weights w, the goal is to find the
optimal solution w∗ of the problem:

min
w

L0(v̂, θ̂, p̂g, q̂g) (10)

s.t. (v̂, θ̂, p̂g, q̂g) = O[w](pd, qd)

(v̂, θ̂, p̂g, q̂g, p̂f , q̂f ) satisfy (2)-(6i)

where L0 denotes the average norm of the difference between
the ground truth and the predictions L0(x̂) = 1

T

∑T
t=1||xt −

x̂t|| over all training instances, and (p̂f , q̂f ) are computed
using constraints (5r) and (5i). However, it is unlikely that
there exist weights w such that the predictions actually satisfy
the AC-OPF constraints, since the learning task is a high-
dimensional regression task. However, ignoring the constraints
entirely leads to predictions that significantly violate the
problem constraints as shown in [8], [26]. The approach from
[9], [8] addresses this difficulty by using a Lagrangian dual
method relying on constraint violations. The violation of a
constraint f(x) ≥ 0 is given by νc(x) = max{0,−f(x)},
while the violation of f(x) = 0 is νc(x) = |f(x)|. Problem
(10) can then be approximated by

min
w

L(λ,w) = L0(v̂, θ̂, p̂g, q̂g) + λ>ν̄ (11)

s.t. (v̂, θ̂, p̂g, q̂g) = O[w](pd, qd)

where λ>ν̄ =
∑

c∈C λcν̄c(v̂, θ̂, p̂
g, q̂g), λc is the weight

for the violation of constraint c, and ν̄c denotes the average
violation of constraint c over all training instances. Again, the
satisfaction of the constraints (5r), (5i) is guaranteed, since the
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power flows are computed indirectly from these constraints.
For a fixed λ, L(λ,w) can be used as the loss function for
training the neural network. Moreover, the constraint weights
can be updated using a subgradient method inspired by La-
grangian dual methods that performs the following operations
in iteration j.

wj = arg min
w

L(λ(j−1),w) (12)

λj = λ(j−1) + ρν̄(wj)

Learning the mapping O is challenging for large-scale
topologies. For instance, it takes 7 hours to train a network
for a topology of 3500 buses [8]. This limits the potential
applications of neural networks in large power systems which
may be up to 50000 buses. Indeed, during operations, the
topology of the system may change from day to day through
line or bus switching, meaning that a different mapping
needs to be learned. Similarly, the mapping O depends on
the commitment decisions in the day-ahead markets, again
potentially changing the mapping to be learned.

The goal of this paper is to propose a fast training procedure
to learn the mapping O. Such a fast training procedure would
have many advantages: the NN model could be trained after
the day-ahead market clearing and/or in real time during
operations when the network topology changes, and it could
be tailored to the load profiles of specific times in the day
(e.g., 2:00pm-4:00pm). These considerations are important,
especially given the increasing share of renewable energy in
the energy mix and the increasing prediction errors.

C. Exploiting Network Sparsity

One possible avenue to obtain a fast training procedure is to
exploit the sparsity typically found in power system networks.
Consider a partition {N k}Kk=1 of the buses, i.e.,

K⋃
k=1

N k = N , N k ∩N k′
= ∅, k 6= k′

Denote the generators and loads of region k by Gk and Lk

respectively and define

Ek = {(i, j) ∈ E : i, j ∈ N k}, k ∈ [K].

E↔ = E\(∪Kk=1Ek), N↔ = {i : (i, j) ∈ E↔ ∨(j, i) ∈ E↔}
Here Ek represents the lines within partition element k and
E↔ the coupling lines that connect partition elements. In the
French transmission system, the test case in this paper, |N | =
6705, |E| = 8962, and |E| ≈ 1.3×|N |. Moreover, the system is
organized in 12 geographical areas using 326 (3.6%) coupling
lines and maxk∈[K] |N k| = 1156 (17.2%) buses.

To leverage the network sparsity, a natural first attempt
would be to learn a mapping for each region, i.e.,

Ok
0 : R2|Lk| → R2|Nk|+2|Gk| (k ∈ [K]). (8)

The learning thus predicts the setpoints for generators in region
k using only the loads of the same region. These learning tasks
would be performed independently and in parallel. However,
it is obvious that the loads Lk are not sufficient to determine

1
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Fig. 2: A Simple Network With |N | = 6, |E| = 7, |G| = 1,
and |L| = 4.

the optimal setpoints for generators Gk. In fact, Ok
0 is not even

a function, since two inputs for the loads Lk in the training
set may be associated with different outputs due to loads in
other parts of the network.

D. Capturing Flows on Coupling Lines

Consider the simplistic power system depicted in Figure 2.
There are two areas, N 1 = {1, 2, 3} and N 2 = {4, 5, 6},
which gives N↔ = {3, 4}, E↔ = {(3, 4), (4, 3)}. The
mapping O views the setpoints for the generator at bus 2
(pg2, q

g
2) as a function of (pd1, q

d
1 , p

d
4, q

d
4 , p

d
5, q

d
5 , p

d
6, q

d
6). How-

ever, assume that flows (pf4,3, q
f
4,3), along with the voltage

magnitudes v3, v4 are fixed and respect constraints (4), (5r),
(5i) associated with line (3, 4). In that case, the setpoints for
the generator at bus 2 can be computed without the knowledge
of (pd4, q

d
4 , p

d
5, q

d
5 , p

d
6, q

d
6): the vector (pf4,3, q

f
4,3, v3) encodes all

the information from area 2 needed to compute the generator
setpoint. Hence, one may attempt to express (pg2, q

g
2) as a

function of (pd1, q
d
1 , p

f
4,3, q

f
4,3, v3) which decreases the input

size from 8 to 5. The input size decreases by 3 in this example
but the size reduction is significantly larger in actual systems.

With this in mind, the mappings in Equation 8 become

Ok : R2|Lk|+|N→k|+2|E→k| → R|N
k\N→k|+|Ek|+2|Gk| (9)

where the coupling lines, buses of region k are defined as

E→k = {(i, j) ∈ E↔ : i ∈ N k ∨ j ∈ N k}
N→k = N k ∩N↔

Ok maps the loads in area k, the flows to area k, and
the voltage of the coupling buses to the optimal generator
setpoints in the area, i.e., the active and reactive outputs of the
regional generators, the phase angle differences of the regional
branches, and the voltage setpoints for the non-coupling buses
of the region. For large transmission systems, the input/output
dimensions of each mapping Ok are significantly smaller that
those of O. The learning tasks can proceed in parallel and
their complexity is reduced, since each mappings Ok is an
order of magnitude smaller in size than O.

Unfortunately, this approach has a key limitation: each
mapping Ok can be learned from historical data but cannot
be used for prediction since the coupling flows and voltages
are not known at prediction time. Indeed, during training,
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Algorithm 1: The First-Stage Coupling Training.
1 λc ← 0, ∀c ∈ C↔
2 for i = 1, 2, ..., epochsλ do
3 for j = 1, 2, ..., epochsw do
4 (v̂0, ∆̂θ

0
)← O↔[w0](pd, qd)

5 L↔(λ,w0)← L0(v̂0, ∆̂θ
0
) +

∑
c∈C↔ λcν̄c(v̂

0, ∆̂θ
0
)

6 w0 ← w0 − α∇w0 (L↔(λ,w0))
7 end
8 λc ← λc + ρν̄c, ∀c ∈ C↔
9 end

Result: Weights (w0)∗

the learning task has access to the coupling values for each
instance. However, this is not true at prediction time. The next
section shows how to overcome this difficulty.

V. TWO-STAGE LEARNING OF AC-OPF

The fast training method for AC-OPF is a two-stage ap-
proach: the first stage is a NN that predicts the flow on the
coupling lines and the second stage is a collection of NNs,
each of which approximates a mapping Ok.

A. Learning Coupling Voltages & Flows

The goal of the first stage is to learn the mapping

O↔ : R2|L| → R|N
↔|+|E↔| (13)

from the loads to the voltages magnitude v0 of the coupling
buses and the phase angle difference ∆θ0 of the coupling
branches. Although the mapping considers all loads, it can be
learned fast (e.g., under 30 minutes) even for large networks,
because of the small number of coupling buses and lines. The
coupling flows are then computed indirectly via constraints
(5r) and (5i). Let C↔ denote the set of constraints (2) for
i ∈ N↔, and (4) and (5r), (5i) for (i, j) ∈ E↔. The learning
task uses a neural network O↔[w0] parameterized by weights
w0 and predicts the coupling voltages (v̂0, ∆̂θ

0
). The loss

function is given by:

L↔(λ,w0) = L0(v̂0, ∆̂θ
0
) +

∑
c∈C↔

λcν̄c(v̂
0, ∆̂θ

0
)

The training follows equation (12) and the resulting optimal
weights (w0)∗ lead to the first-stage predictions

(v̂0, ∆̂θ
0
) = O↔[(w0)∗](pd, qd)

and the resulting first-stage coupling flow predictions
(p̂f )0, (q̂f )0. The first stage is summarized in Algorithm 1.

B. Training of Regional Systems

The training of the regional systems uses the first-stage
predictions for the coupling flows and voltages. Note however
that it could use the ground truth present in the instance data,
but experimental results have shown that this degrades the
overall prediction accuracy. The decoupling is illustrated in
Figure 3, where the voltages of the coupling buses 3 and 4
and the incoming/outgoing flows for each region are fixed to
the first-stage predictions.

1
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v0
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(pd,qd)

v0
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(pd,qd)

6

(pd,qd)

((pf )0, (qf )0) ((pf )0, (qf )0)

Fig. 3: Illustration of the Decomposition.

Algorithm 2: The Second-Stage Training For Sub-
Network k.

1 λc ← 0,∀c ∈ Ck

2 (v̂0, ∆̂θ
0
)← O↔[(w0)∗](pd, qd)

3 Compute (p̂f )0,k, (q̂f )0,k via (5r), (5i)
4 for i = 1, 2, ..., epochsλ do
5 for j = 1, 2, ..., epochsw do
6 (v̂k, ∆̂θ

k
, (p̂g)k, (q̂g)k)←

Ok[wk]((pd)k, (qd)k, v̂0,k, (p̂f )0,k, (q̂f )0,k)

7 Lk(λ,wk)← L0(v̂k, ∆̂θ
k
, (p̂g)k, (q̂g)k) +∑

c∈Ck λcν̄c((v̂, ∆̂θ, p̂g , q̂g , v̂
0, (p̂f )0, (q̂f )0)k)

8 wk ← wk − α∇wk (Lk(λ,wk))
9 end

10 λc ← λc + ρν̄c, ∀c ∈ Ck
11 end

Result: Weights (wk)∗

To learn mappings Ok (k ∈ [K]), let Ck denote the set
of constraints associated with region k, i.e., constraint (2) for
buses i ∈ N k \ N→k, constraints (3r), (3i), (6r), and (6i)
for buses i ∈ N k, and constraints (4), (5r), (5i) for branches
(i, j) ∈ Ek. In particular, the power balance constraint (6r),
(6i) for region k becomes

pgi − (pdi −
∑

(i,j)∈E→k

(pfij)
0) =

∑
(i,j)∈Ek

pfij i ∈ N k

qgi − (qdi −
∑

(i,j)∈E→k

(qfij)
0) =

∑
(i,j)∈Ek

qfij i ∈ N k

The learning task uses a collection {Ok[wk]}k∈[K] of NNs
and the loss function for each regional net is given by

Lk(λ,wk) = L0(v̂k, ∆̂θ
k
, (p̂g)k, (q̂g)k)+∑

c∈Ck

λcν̄c(v̂
k, ∆̂θ

k
, (p̂g)k, (q̂g)k, v̂0,k, (p̂f )0,k, (q̂f )0,k)

where v̂0,k is the first-stage prediction for the voltage magni-
tude of the coupling buses of region k and (p̂f )0,k, (q̂f )0,k

the first-stage predictions for the incoming/outgoing flows
of region k. The training, summarized in Algorithm 2, is
performed using the approach in equation (12) and each region
can be trained in parallel. Line 2 predicts the voltage setpoints
for the coupling buses and the phase angle differences of
the coupling lines. Line 3 computes the predicted coupling
flows from these predictions. Line 6 computes the predictions
for region k given the current NN parameters and constraint
weights. Line 8 performs the back-propagation to update the
weights and line 10 updates the constraint weights.
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VI. EXPERIMENTAL RESULTS

A. Experimental Setting

The datasets were generated by solving AC-OPF problems
with the nonlinear solver IPOPT [27] using 2.5 GHz-i7 Intel
Cores and 16GB of RAM. In total, 104 load profiles, which
correspond to feasible AC-OPF problems, were generated for
each test case. 80% of these instances were used for training
and the remaining 20% for testing. The learning models were
implemented using PyTorch [28] and trained using NVidia
Tesla V100 GPUs with 16GB of memory. The training of each
network utilizes mini-batches of size 120 and the learning rate
α was set to be decreasing from 10−3 to 10−6, while ρ was
set to 10−3.

The first-stage NN consists of two subnetworks with sizes
2|L| × |N↔| × |N↔| and 2|L| × |E↔| × |E↔| for the voltage
magnitudes and phase angle differences respectively. For each
region, each NN topology consists of 4 subnetworks, one for
each predicted variable. The subnetworks have one hidden
layer of size 2|Lk| × 3|Lk| × |Gk|. The subnetworks used to
approximate the original mapping (equation (7)) are similar in
structure and have size 2|L| × 3|L| × |G|.

B. Load Profiles

The power systems used as test cases (Table I) are parts of
the actual French Transmission System. France is the French
transmission system, France_EHV is the very high-voltage
French system, and France_LYON is France_EHV with a
detailed representation of the Lyon region. The French system
is organized in 12 geographical regions. The dataset is gener-
ated by taking into account this geographical information. A
load l in region k with nominal value (pd, qd)0 is generated
with the formula

(pd, qd) = (α+ βk + γl)((pd)0, (qd)0)

where the following coefficients are randomly drawn from the
folowing distributions

α ∼ Uniform[0.875, 0.975]

βk ∼ Uniform[−0.025, 0.025], ∀k ∈ [K]

γl ∼ Uniform[−0.0025, 0.0025], ∀l ∈ L
The term α captures the system-wide load level, while βk is
associated with differences in the loads between regions (e.g.,
due to potentially different weather conditions). The difference
in coefficients may be up to 5% for two different regions.
Finally, γl is the uncorrelated noise added to each individual
load with a range of 0.5% of its nominal value.

The resulting dataset captures realistic load profiles: the
uniform load perturbation, the load level differences between
the regions, and the fixed active/reactive power ratio repre-
sent the typical behavior for aggregated demand in a large-
scale topology spanning several geographic regions. Randomly
perturbing each individual load in an uncorrelated fashion
would produce unrealistic load profiles: they would lead to
an unnecessarily challenging learning task that would need to
capture an exponential number of unrealistic behaviors of the
power system. To highlight this point, Figure 4 depicts the

Fig. 4: Consumption for Three Regions in the French System
over a 12-hour Interval.

actual consumption for three French regions over a 12 hour
interval. Observe the strong correlation of the demand between
the three regions. However, the correlation is not perfect and
the ratios between the regional loads vary by small factors.
The term βk is used to account for this behavior. The resulting
load profiles range from 0.85 of the nominal to the nominal
load. This 15% difference is typical over a 12-hour interval as
shown in Figure 4.

C. First-stage Predictions

This section presents the prediction errors of the first stage.
The training time was limited to 30 minutes. Table II contains
aggregate results for the active and reactive powers of the
coupling branches, as well the voltage magnitudes, for all
three test cases. The results are an average over all instances
and coupling branches. The average error is close to 1 MW
for the largest two test cases: France and France_Lyon.
Meanwhile, the 95-Quantile indicates that 95% of the pre-
dictions result in an error less that 5 MW. In the smaller
France_EHV, the errors are slightly higher reaching 3.5 MW
on average. Given that the nominal load of the France system
is 50, 000 MW) and the nominal flow values ‘are greater than
100 MW and up go to 1, 000 MW), these results indicate that
the prediction errors are small in percentage for all test cases.
Table II also shows that the voltage magnitudes are predicted
very accurately. Figure 5 contains detailed results on the active
part of the flows of the coupling branches for the France test
case, showing consistent results across all tested instances. The
95% quantile graph indicates that the prediction errors exceed
5 MW only for a very small percentage of the test cases and
branches.

D. Performance of the Learning Models

This section compares the model O that directly approx-
imates the mapping O (Equation 7) with the proposed two-
stage approach D. The results show that, with a time limit of
90 minutes, D outperforms O and is more scalable. In model
D, 30 minutes is allocated to the first stage, and 60 minutes
to the second stage. The comparison is performed on the
smaller systems, France_EHV and LYON, which represents
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TABLE I: The Power System Networks with Regional Information

Benchmark |N | |E| |L| |G| |N k|Kk=1 |E↔|

France_EHV 1737 2350 1731 290 [338, 280, 233, 179, 143, 126, 124, 72, 67, 64, 57, 54] 148
France_Lyon 3411 4499 3273 771 [1158, 357, 294, 288, 264, 255, 231, 197, 184, 67, 62, 54] 219

France 6705 8962 6262 1708 [1156, 796, 748, 746, 627, 517, 497, 395, 325, 322, 298, 278] 326

p̂f (MW) v (P.U)
Benchmark Avg 95% Quantile Avg 95% Quantile

France_EHV 3.43 11.91 25 ·10−5 76 · 10−5

France_Lyon 1.25 4.89 27 ·10−5 82 · 10−5

France 0.99 4.11 50 ·10−5 153 · 10−5

TABLE II: Absolute Errors for the Voltage Magnitude at the
Coupling Buses and the Active Power Flow of the Coupling
Branches.

Fig. 5: Prediction Errors (Average and 95% Quantile) over
all Testing Instances for the Active Flow of the Coupling
Branches for Testcase France. The Instances are Sorted in
Increasing Order of Average Error.

the high-voltage French system and the high-voltage French
with a detailed representation of the Lyon region. Experimental
results on the full French system are only given for model
D, since the original model exceeds the capacity of the GPU
memory. The comparison consists of three parts. The first part
reports the accuracy for variables (v̂, p̂g) (that are directly
predicted) and the indirectly predicted p̂f . The second part
considers constraint violations. The third part discusses how
the predictions can be used to seed an optimization model that
restores feasibility.

1) Prediction Accuracy: Figure 6 illustrate the convergence
of the two models for the predicted variables v̂, p̂g for a
specific bus and generator from the France_LYON test case.
The x-axis corresponds to test instances sorted by increasing
system load. There is significant volatility in the ground
truth values since instances that are close in the x-axis do
not necessarily correspond to similar load vectors. Indeed, a
similar overall system load may exhibit significant regional
load differences. The results demonstrate that, for voltage
magnitudes, model O has significant errors. The same hold
for active power. In constrast, model D closely follows the
ground truth for voltage magnitudes and exhibits minor errors
for active power predictions. The difference between the two

Model O Model D
Benchmark Avg 95%

Quantile
Avg 95%

Quantile

France_EHV 39 · 10−5 125 · 10−5 22 · 10−5 61 · 10−5

France_Lyon 45 · 10−5 127 · 10−5 22 · 10−5 78 · 10−5

France - - 25 · 10−5 84 · 10−5

TABLE III: Prediction Errors (P.U.) for Voltage Magnitudes
(v̂).

Model O Model D
Benchmark Avg 95% Quantile Avg 95% Quantile

France_EHV 8.41 50.82 0.84 3.27

France_Lyon 8.93 47.54 0.30 0.94

France - - 0.19 0.70

TABLE IV: Prediction Errors (MW) for Active Power (p̂g).

models is quite striking.
Tables III, IV, and V summarize the tprediction errors over

all testcases, buses, generators, and lines, as well the 95%
Quantile. The tables omit all power results for generators that
are either off for all instances (due to potentially high cost) or
constantly producing at their respective upper bounds (due to
low cost). For voltage magnitudes, model D divides the error in
half compared to model O. This difference is significant for the
prediction of the power flows and constraint violations. Figure
7 demonstrates that model D scales to the size of the France
system and continues to produce highly accurate predictions.
For active power, model delivers predictions whose errors are
an order of magnitude smaller than those of model O. The
average errors are below 1 MW, which is small compared
to the total system load (∼ 50, 000 MW). Again, Figure
7 demonstrates that model D nicely scales to the France
system. The benefits of model D are abundantly clear for the
power flow predictions p̂f , which are indirectly predicted as a
function of the predictions v̂ and θ̂. For France_LYON, the
second largest test case, model O results in large errors (up
to 50 MW). In contrast, model D results in minor errors, with
95% of the predictions having an error of at most 1.04 MW
in the largest benchmark. Compared to the overall system
scale, these errors are small in percentage. Note that accurate
predictions for power flows are critical for low violation
degrees of the AC-OPF constraints.

2) Feasibility: Table VI reports the constraint violations
for the bounds on active power and voltage magnitude (con-
straints (2), (3r)). Model D has minor violations for 99.9%
of these constraints. Table VII report the violations of the
active flow conservation constraints. Again, model D has an
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(a) Voltage Magnitude (b) Active power

Fig. 6: Convergence of O and D Illustrated for a Bus and Generator.

(a) Voltage Magnitude (b) Active power

Fig. 7: Prediction Errors for the France System using Model D.

Model O Model D
Benchmark Avg 95% Quantile Avg 95% Quantile

France_EHV 4.53 16.88 2.01 4.20

France_Lyon 8.43 32.20 0.82 1.91

France - - 0.45 1.04

TABLE V: Prediction Errors (MW) for Active Power Flow
(p̂f ).

Model O Model D
Benchmark v pg v pg

France_EHV 99.90 98.46 99.74 99.94

France_Lyon 99.72 99.24 99.91 99.99

France - - 99.97 99.99

TABLE VI: Percentage of AC-OPF bound Constraints with
Violations under 1 MW (for p̂g) and under 10−4 P.U. (for v̂)

Model O Model D
Benchmark Avg 95% Quantile Avg 95% Quantile

France_EHV 4.49 16.20 4.82 9.77

France_Lyon 18.65 100.36 1.91 4.67

France - - 1.05 2.39

TABLE VII: Violation for the Active Power Balance Con-
straint (MW).

Model O Model D
Benchmark Avg Max Avg Max

France_EHV 0.036 0.193 0.026 0.119

France_Lyon 0.281 0.987 0.016 0.071

France - - 0.012 0.030

TABLE VIII: Objective Value Increase of the Load-Flow
Solution (in %) Compared to AC-OPF Objective.

average 1.05 MW violations in the France test case, which
is insignificant compared to the scale of the system.

3) Load-Flow Analysis: This section shows how model
D can also be used for applications that require a high-
quality feasible solution to AC-OPF. It presents an optimiza-
tion model, called a Load Flow (L-F) model, for finding the
feasible AC-OPF solution that is closest to the prediction of
model D, i.e.,

min ||pg − p̂g||22 + ||v − v̂||22 (14)
s.t (2) - (6i).

Table VIII reports the objective increase in the load flow
solution with models D and O compared to the AC-OPF
solution, i.e.,

1

Ntest

Ntest∑
i=1

|1− costLF

costAC
| × 100%
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L-F O L-F D AC-OPF
Benchmark Avg Max Avg Max Avg Max

France_EHV 7.14 11.72 6.70 10.83 7.10 10.51

France_Lyon 38.21 186.71 20.08 26.75 75.20 215.47

France - - 65.21 130.67 164.07 315.97

TABLE IX: Comparison of the Load Flow and AC-OPF
Computation Times (in seconds).

where costLF denotes the load flow cost and costAC denotes
the AC-OPF cost. The load flow based on model D is
within < 0.03% on average of the AC-OPF solution and one
magnitude smaller compared to the solutions provided by O
on the France_Lyon testcase.

In terms of computational efficiency, model D delivers a
prediction in a few milliseconds, which makes it sufficient to
compare the optimization results only. Table IX compares the
execution times of the load flow and the AC-OPF optimiza-
tions. The results demonstrate that the load flow optimization
is significantly faster compared to the AC-OPF optimization on
the largest two benchmarks. This indicates that a combination
of machine learning and optimization is beneficial when a
near-optimal AC-feasible solution to the OPF is desired.

VII. CONCLUSION

This paper considered the design of a fast and scalable
training for a machine-learning model that predicts AC-OPF
solutions. It was motivated by the facts that (1) topology
optimization and the stochasticity induced in renewable energy
may lead to fundamentally different AC-OPF instances; and
(2) existing machine-learning algorithms for AC-OPF require
significant training time of and do not scale to the size of
real transmission systems. The paper proposed a novel 2-stage
approach that exploits a spatial network decomposition. The
power network is viewed as a set of regions, the first stage
learns to predict the flows and voltages on the buses and lines
that are coupling the regions, and the second stage trains,
in parallel, the machine-learning models for each region.
Experimental results on the French transmission system (up to
6,700 buses and 9,000 lines) demonstrate the potential of the
approach. Within a training time of 90 minutes, the approach
predicts AC-OPF solutions with very high fidelity (e.g., an av-
erage error of 1 MW for an overall load of 50 GW) and minor
constraint violations, producing significant improvements over
the state-of-the-art. The results also show that the predictions
can be used to seed a load flow optimization that returns a
feasible solution within 0.03% of the AC-OPF objective, while
reducing the running times by a factor close to 3. Future work
will focus on generalizing the approach to security-constrained
OPF, by studying how to merge the algorithm proposed in [3]
to the AC setting and the proposed 2-stage approach.
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