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Abstract—This paper considers the problem of releasing op-
timal power flow (OPF) test cases that preserve the privacy of
customers (loads) using the notion of Differential Privacy. It is
motivated by the observation that traditional differential privacy
algorithms are not suitable for releasing privacy preserving OPF
test cases: The added noise fundamentally changes the nature
of the underlying optimization and often leads to test cases with
no solutions. To remedy this limitation, the paper introduces the
OPF Load Indistinguishability (OLI) problem, which guarantees
load privacy while satisfying the OPF constraints and remaining
close to the optimal dispatch cost. The paper introduces an
exact mechanism, based on bilevel optimization, as well as
three mechanisms that approximate the OLI problem accurately.
These mechanisms enjoy desirable theoretical properties, and
the computational experiments show that they produce orders
of magnitude improvements over standard approaches on an
extensive collection of test cases.

I. INTRODUCTION

Releasing high-fidelity energy network test cases is crucial
to support the design of efficient and effective algorithms
aimed at improving energy network operations. However, the
availability of realistic test cases is lagging and has been
recognized as a severe impediment to continued scientific
progress by federal agencies.1 On the other hand, releasing
such rich datasets raises fundamental privacy concerns: The
releasing of the electrical load of a customer can cause signif-
icant economic damage, e.g., by revealing sensitive business
activities and/or manufacturing processes. Indirectly, they may
also reveal how transmission operators operate their networks,
raising security issues [1].

To address these issues, several privacy-preserving frame-
works have been proposed. In particular, Differential Pri-
vacy (DP) [2], [3] captures a desirable privacy property
of computations over datasets. In particular, it allows to
measure and bound the privacy risk associated with the
participation of an individual to an analysis task. Differ-
ential privacy algorithms can be used to generate privacy-
preserving datasets by introducing carefully calibrated noise
to the entries of a dataset, which prevents the disclosure of
sensitive information. However, when these privacy-preserving
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1For instance, in 2015, ARPA-E initiated the Grid Data Program to produce
high-quality datasets for security-constrained optimal power flows.

datasets are used as inputs to complex optimization algo-
rithms, e.g., for solving Optimal Power Flow (OPF) problems,
they may produce results that are fundamentally different
from those obtained on the original data. This behavior is
shown in Fig. 1, which illustrates the average error (measured
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Fig. 1: Average L1 error re-
ported by the Laplace Mech-
anism. The percentages ex-
press the AC-OPF instances
with feasible dispatches.

as the L1 distance) between
the original and the privacy-
preserving loads obtained by
using Laplacian noise for
a set of 29 networks.2 As
privacy guarantees increase
(corresponding to increasing
values of parameter α, to be
introduced in Section III-B),
the privacy-preserving loads
become significantly higher
than the original ones. Ad-
ditionally, the number re-
ported on each bar repre-
sents the percentage of fea-
sible privacy-preserving in-
stances for the AC-OPF prob-
lem: They reveal severe feasibility issues with the privacy-
preserving procedures.

As a consequence, despite its strong theoretical foundations,
industrial adoption of differential privacy has remained lim-
ited. Large-scale practical deployments of differential privacy
were carried out by large data owners, such as Google [4]
and Apple [5]. These applications, however, do not involve
releasing data for solving complex optimization problems, but
rather for evaluating a pre-defined set of queries, e.g., the count
of individuals satisfying specific criteria for statistical analysis.

This paper is motivated by the desire of releasing OPF
benchmarks that maintain the privacy of customer loads while
overcoming the fidelity limitations of traditional differential
privacy mechanisms. It formalizes the OPF Load Indistin-
guishability (OLI) problem and proposes a mechanism that
applies complex Laplacian noise and leverages the post-
processing immunity of differential privacy to redistribute
the noise optimally using a bilevel optimization problem.
To address the associated computational challenges, the pa-
per proposes three mechanisms that approximate the bilevel
optimization: A relaxation of the bilevel optimization, an
implementation using the Fritz John conditions, and a Min-
Max mechanism that exploits the structure of the bilevel
optimization present in practice.

2The experimental settings are reported in all details in Section VII.
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The main contributions of the paper can be summarized as
follows: (1) It formalizes the OLI problem and its privacy and
fidelity requirements; (2) It formalizes an ideal mechanism that
satisfies these requirements using a post-processing step based
on a bilevel optimization that redistributes the noise optimally;
and (3) It presents a novel Min-Max mechanism that closely
approximates the ideal mechanism, preserves its key theoreti-
cal properties, and is shown to produce high-fidelity privacy-
preserving loads in reasonable time for large-scale test cases.
The mechanism uses complex Laplacian noise to keep the
relationship between active and reactive loads, guarantees that
the OPF cost on the privacy-preserving loads is close to the
original cost, and ensures that, in the worst case, the accuracy
of the mechanism is at most a constant factor away to the
optimal Laplacian mechanism. Moreover, in practice, the Min-
Max mechanism provides orders of magnitude improvements
compared to standard DP mechanisms.

II. RELATED WORK

There is a rich literature on theoretical results of DP (see
e.g., [3], [6]). The literature on DP applied to energy systems
includes considerably fewer efforts. Ács and Castelluccia [7]
exploit a direct application of the Laplace mechanism to
hide user participation in smart meter datasets, achieving ε-
DP. Zhao et al. [8] study a DP schema that exploits the
ability of households to charge and discharge a battery to
hide the real energy consumption of their appliances. Liao et
al. [9] introduce Di-PriDA, a privacy-preserving mechanism
for appliance-level peak-time load balancing control in the
smart grid, aimed at masking the consumption of top-k ap-
pliances of a household. Finally, Zhou et al. [10] introduce
the notion of monotonicity of the DC-OPF operator, which
requires that monotonic changes in the network loads induce
monotonic changes in the DC-OPF objective cost. This enables
a characterization of the network sensitivity, which is useful
to preserve the privacy of monotonic networks.

A different line of work, conducted by Karapetyan et al. [11]
quantifies empirically the trade-off between privacy and utility
in demand response systems. The authors analyze the effects
of a simple Laplace mechanism on the objective value of the
demand response optimization problem. Their experiments on
a 4-bus micro-grid show drastic results: the optimality gap
only converges to approximately 90% in some cases.

A DP schema that uses constrained post-processing was
recently introduced by Fioretto et al. [12] and adopted to
release private mobility data. In contrast, the proposal in this
work releases the private data set through a mechanism that
imposes constraints to ensure the problem solution cost is
close to the solution cost of the original problem, and that
the underlying optimal power flow constraints are satisfiable.

III. PRELIMINARIES

A. Optimal Power Flow

Optimal Power Flow (OPF) is the problem of determining
the best generator dispatch to meet the load demand in a
power network. A power network is viewed as a graph pN,Eq
where the set of buses N represents the nodes and the set

Model 1 POPF: AC Optimal Power Flow (AC-OPF)

variables: Sgi , Vi @i P N, Sij @pi, jq P E Y ER

minimize: OpSgq �
¸

iPN

c2ip<pSgi qq
2 � c1i<pSgi q � c0i (1)

subject to: =Vi � 0, i P N (2)

vli ¤ |Vi| ¤ vui @i P N (3)

� θ∆
ij ¤ =pViV

�
j q ¤ θ∆

ij @pi, jq P E (4)

Sgli ¤ Sgi ¤ Sgui @i P N (5)

|Sij | ¤ suij @pi, jq P E Y ER (6)

Sgi � Sdi �
°
pi,jqPEYER Sij @i P N (7)

Sij � Y �
ij |Vi|

2 � Y �
ij ViV

�
j @pi, jq P E Y ER (8)

of lines E represents the edges. Note that E is a set of
directed arcs and ER is used to denote those arcs in E but in
reverse direction. The AC power flow equations are based on
complex quantities for current I , voltage V , admittance Y , and
power S. These non-convex non-linear equations are a core
building block in many power system applications. Practical
applications typically include various operational constraints
on the flow of power, which are captured in the AC OPF
formulation presented in Model 1. The objective function
OpSgq captures the cost of the generator dispatch, with Sg

denoting the vector of values xSgi | i P Ny. Constraint (2) sets
the reference angle to zero for the slack bus i P N to eliminate
numerical symmetries. Constraints (3) and (4) capture the
voltage and phase angle difference bounds. Constraints (5)
and (6) enforce the generator output and line flow limits.
Finally, Constraint (7) captures Kirchhoff’s Current Law and
Constraint (8) captures the Ohm’s Law.

The paper uses N � xN,E,Sd,Y ,θ∆,S, s,vy to suc-
cinctly describe a power network, where Sd represents the vec-
tor of power loads, Y the admittance matrix, and θ∆,S, s,v
represent, respectively, the phase angle difference bounds, the
generator output limits, the line flow limits, and the voltage
bounds. The paper further defines n � |N | and m � |E|.

The OPF problem is specified in Model 1: It takes as
input the power network N and returns the optimal vector of
generator dispatches Sg (with ties broken arbitrarily). Since
this paper solely focuses on load obfuscation, POPFpS

dq will
be used to denote the OPF problem that takes as input a power
network N with loads Sd and returns an optimal generator
dispatch. The solution set satisfying Constraints (2) to (8) for
loads Sd is denoted by CPF pSdq. Table I reviews the symbols
and notation adopted in the paper.

B. Privacy Goals and Differential Privacy

Differential privacy [2] (DP) is a rigorous privacy notion
used to protect the participation disclosure of an individ-
ual in a computation. The paper considers datasets D �
xSd1 , . . . , S

d
ny P Cn as n-dimensional complex-valued vectors

describing the active and reactive load values Sdi reported
by load i in the network. In our application of interest,
the data curator desires to release a snapshot of a power
network, which includes information on the network topology,
lines parameters, as well as the dispatch values of the load
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TABLE I: Power Network Nomenclature.

N A Power network ε The privacy loss
Sg The set of power generator dispatch α The indistinguishability value
Sd The set of load demands β The faithfulness parameter
POPF The AC-OPF model O� The optimal costs of the original problem
CPF The set of feasible AC power flow solutions x A vector of variables or values
C FJ

BL The Fritz John conditions of the OPF problems xl, xu The upper and lower bounds of quantity x
Mx A mechanism of type x <p�q,=p�q The real and imaginary component of a complex number
Px The optimization problem for the accuracy phase of Mx Y �, I� The conjugate of the admittance matrix Y and the complex current I

consumption at each bus. Loads are sensitive, and the privacy
goal is to obfuscate their value up to some quantity α ¡ 0.

To obfuscate load values that are close to one another while
retaining the distinction between those that are far apart from
each other, the following adjacency relation is introduced:

D �α D
1 ô Di s.t. |Sdi � S1

d
i | ¤ α ^ Sdj � S1

d
j ,@j � i,

where D and D1 are two datasets and α ¡ 0 is a positive
real value. The above relates two load vectors that differ in at
most one item by a value not greater than α. This relation
ensures that a differentially private mechanism (introduced
next) can protect an individual load, even if an attacker
acquires information related to all other loads.

Informally speaking, a differentially private mechanism
ensures that functions on two adjacent datasets (i.e., datasets
differing on a single value by at most α) give similar results.
The following definition formalizes this intuition.

Definition 1 (Differential Privacy [2]): A randomized
mechanism M : D Ñ R with domain D and range R is ε-
differential private if, for any output response O � R and any
two adjacent inputs D �α D

1 P Cn, for a fixed value α ¡ 0,

PrrMpDq P Os ¤ eεPrrMpD1q P Os. (9)

The level of privacy is controlled by the parameter ε ¥ 0,
called the privacy loss, with small values denoting strong
privacy. The level of indistinguishability is controlled by the
parameter α ¡ 0.

The definition above was first introduced by Chatzikoko-
lakis et. al [13]. It is a generalization of the classical dif-
ferential privacy definition, that protects the participations of
individuals into a dataset, to generic metric spaces. This work
focuses on Euclidean spaces, since our datasets are in Cn.

Differential privacy satisfies several important properties, in-
cluding composition and immunity to post-processing. Parallel
composition ensures that the privacy loss does not increases
when several differentially private mechanisms are applied
on different partitions of the dataset. For instance, in our
target application, this would correspond to different subsets
of loads. The paper uses D X D1 to denote the vector of
loads whose locations are both in D and D1. More formally,
D XD1 � xSdi | i P ID ^ i P ID1y, with ID being the set of
load locations of D.

Theorem 1 (Parallel Composition [14]): Let D1 and
D2 be disjoint subsets of D and M be an ε-differentially
private mechanism. Computing MpDXD1q and MpDXD2q
satisfies ε-differential privacy.

The immunity to post-processing ensures that applying
arbitrary functions to the output of a differentially private-
mechanism preserves its privacy guarantees.

Theorem 2 (Post-Processing Immunity [3]): Let M be an
ε-differential private mechanism and g be an arbitrary mapping
from the set of possible output sequences to an arbitrary set.
Then, g �M is ε-differential private.

Observing values of a dataset vector D is achieved through
the means of numeric queries, i.e., functions mapping a dataset
to a result set. A query Q can be made differentially private by
injecting carefully calibrated noise to its output. The amount of
noise to inject depends on the sensitivity of the query, denoted
by ∆Q and defined as

∆Q � max
D�αD1

��QpDq �QpD1q
��
1
.

For instance, querying the values of a load from a dataset
D is achieved through an identity query Q, whose sen-
sitivity ∆Q � α. The Laplace distribution with 0 mean
and scale b, denoted by Lappλq, has a probability density
function Lappx|λq � 1

2λe
� |x|
λ . It can be used to obtain an

ε-differentially private algorithm to answer numeric queries
[2]. In the following, Lappλqn denotes the i.i.d. Laplace
distribution over n dimensions with parameter λ.

Theorem3 (Laplace Mechanism [2]): Let Q be a numeric
query that maps datasets to Rn. The Laplace mechanism that
outputs QpDq � z, where z P Rn is drawn from the Laplace
distribution Lap

�
∆Q

ε

	n
, achieves ε-differential privacy.

The Laplace mechanism can be extended to work on the
complex plane by drawing the noise z from the Polar Lapla-
cian distribution; Its probability density function, given a point
pr, θq in polar coordinates, is: PLappr, θ|λq � λ2

2π r e
�λ r. The

(Polar) Laplace mechanism with parameter λ � α{ε satisfies
α-indistinguishability [13]. This approach was first introduced
in [15]. Without loss of generality, the document refers to this
approach as the Laplace mechanism.

While privacy is evaluated through the means of the indis-
tinguishability value α, the utility of the privacy-preserving
dataset is evaluated based on its fidelity with respect solving
OPF problems and such that their solution cost is close to the
solution cost computed using the original data.

C. A Bayesian Interpretation of DP

Differential privacy can also be interpreted as a bound on the
ability of an attacker to learn anything substantially new about
a dataset after observing a differentially private response about
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the data. Using conditional probabilities, Definition 1 can be
expressed and rewritten as:

PrrR P O|Ds ¤ eε PrrR P O|D1s, (10)

where R is a random variable denoting the response of
mechanism M. An attacker tries to gain information on D
by exploiting R, as captured by PrrD|Rs. Using Bayes’ rule:

PrrD|Rs �
PrrR|DsPrrDs

PrrRs
,

where PrrDs is the prior probability on dataset D (i.e.,
the attacker’s belief of what the dataset may contain), and
PrrD|Rs is the attacker’s posterior about D given the obser-
vation R. This Bayesian interpretation is interesting as it allow
us to relate with the concept of non-learnability. This concept
captures the change of the attacker’s posterior with respect to
her prior and requires these quantities to be mostly unchanged
after observing the event R, i.e., PrrD|Rs � PrrDs.

Differential privacy focuses on the difference of beliefs with
respect to adjacent datasets:

PrrD|Rs

PrrD1|Rs
when D �α D

1

that is, an attacker knows a-posteriori how much D is more
likely than D1 given the response R. Using Bayes’rule:

PrrD|Rs

PrrD1|Rs
�

PrrR|DsPrrDs

PrrR|D1sPrrD1s
¤ eexp PrrDs

PrrD1s
. (11)

The inequality follows from (10), and (11) tells us that
differentially private mechanisms guarantee that ratios of pos-
terior beliefs for adjacent datasets never increase too much
when compared to their ratio of the belief a-priori.

The above also implies that even if an attacker has a hold
on some publicly available information about the data (e.g.,
the OPF cost), its belief about a dataset (e.g., load values
of customers) does not change too much after observing
the output response of a differentially privacy mechanism.
Of course, if the a-priori knowledge about the dataset is
extensive, then it will remain as such even after observing
the differentially private response. 3

IV. OPF-LOAD INDISTINGUISHABILITY

The OPF Load Indistinguishability (OLI) problem aims
at releasing the loads of a power system data in a privacy-
preserving manner. It takes as input the loads Sd and returns
obfuscated loads Ŝd that satisfy two desiderata:

1) Privacy: Sd and Ŝd are α-indistinguishable, i.e., they
satisfy Definition 1 for a given value α ¡ 0.

2) Fidelity: The objective of the OPF problem with loads
Ŝd is close to the OPF objective with loads Sd, i.e.,

|OpPOPFpŜ
dqq �O�| ¤ βO� (12)

for some parameter β ¡ 0, where O� � POPFpS
dq is

assumed to be a publicly available information.
The second condition makes sure that the privacy-preserving
OPF is feasible and preserves the original OPF problem cost.

3This would be the case of small benchmark networks, e.g. with only one
generator and one load where the cost may reveal the generation and load
values.

V. BILEVEL OPTIMIZATION FOR LOAD OBFUSCATION

To address the OLI problem, this section introduces a novel
mechanism, called MOLI, that consists of two phases:

1) Privacy-Phase: MOLI first applies the Laplace mecha-
nism to obtain an α-indistinguishable demand vector S̃d:

MPLappS
d, α{εq � S̃d � Sd � PLappα{εqn, (13)

where S̃d is the resulting vector of noisy load demands.
2) Fidelity-Phase: MOLI then post-processes the resulting

noisy demands through the optimization problem POLI
(introduced below) to obtain a new load vector Ŝd.

In the following, N denotes the original power system data,
Ñ the power system whose loads have been obfuscated
using the Laplace mechanism (Equation (13)), as a result of
the privacy phase, and N̂ the post-processed power system
obtained as a result of the fidelity phase.

After executing the two phases, MOLI can then release the
power system description N̂ with the post-processed loads Ŝd.
The heart of the OLI Mechanism is the optimization problem,
POLI, executed during the fidelity phase to attain the OLI
desiderata, and defined as:

POLI � min
pŜd,Sgq

}Ŝd � S̃d}2 (O1)

s.t.:
��OpSgq �O�

�� ¤ βO� (O2)

Sg � POPFpŜ
dq. (O3)

POLI is a bilevel program that takes as input a power sys-
tem Ñ with noisy load values S̃d, as well as two positive
real numbers: α, the indistinguishability level, and β, which
determines the required fidelity of the optimization problem
over the privacy-preserving data. Additionally, the data owner
provides the OPF model and the optimal objective value O�,
which are considered public information.
POLI is a bilevel program, whose upper level objective (O1)

minimizes the L2 distance between the noisy original loads
S̃d and the variables Ŝd representing the new post-processed
loads. Constraint (O3) captures the lower-level optimization:
It computes an optimal generator dispatch Sg for the post-
processed loads Ŝd using Model 1. Constraint (O2) requires
this generator dispatch to achieve β-fidelity with the respect
to the original objective value.

The OLI post-processing can be thought as redistributing
the noise of the Laplace mechanism to obtain new power
load values that satisfy the OLI desiderata. It searches for a
solution to the OPF that also satisfies the β-fidelity constraint.
A feasible solution always exists, since the original loads Sd

trivially satisfy all constraints. A similar approach has been
successfully applied to other problems, e.g. load disaggrega-
tion [16].

Notice that the fidelity phase of MOLI only uses the
privacy-preserving loads S̃d and public information.

Theorem 4: MOLI satisfies α-indistinguishability.
Proof. Each load S̃di pi P Nq obtained from the application

of the Laplace mechanism (13) is α-indistinguishable by
Theorem 3. Their combination produces a vector S̃d that is
α-indistinguishable by parallel composition (Theorem 1). The
result follows from post-processing immunity (Theorem 2). l
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Corollary 1: MOLI satisfies the privacy and fidelity
desiderata of the OLI problem.
The above follows directly from Theorem 4 and the application
of problem POLI.

In addition, MOLI has a strong accuracy guarantee: It is no
more than a constant factor away from optimality since the
Laplace mechanism has been proved optimal for differentially
private identity queries [17].

Theorem 5: The optimal solution Ŝd to the optimization
model POLI satisfies }Ŝd � Sd}2 ¤ 2}S̃d � Sd}2.

Proof. We have

}Ŝd � Sd}2 ¤ }Ŝd � S̃d}2 � }S̃d � Sd}2 (14)

¤ 2}S̃d � Sd}2. (15)

where the first inequality follows from the triangle inequality
on norms and the second inequality follows from

}Ŝd � S̃d}2 ¤ }S̃d � Sd}2

by optimality of Ŝd and the fact that the original loads Sd are
a feasible solution to the optimization program POLI. l

The theorem generalizes a prior result from [18]: It shows
that the post-processing optimization restores feasibility and
fidelity of loads and remains close to optimality.

VI. OPF-LOAD INDISTINGUISHABILITY MECHANISMS

Although mechanism MOLI meets the requirements of the
OLI problem, bilevel programming is known to be challenging
computationally. It is strongly NP-hard [19] and, in addition,
even determining whether a solution is optimal is NP-hard
[20]. To address the underlying computational challenge, this
paper explores three approaches that only modify the fidelity
phase of MOLI. Interestingly, Theorem 5 continues to hold for
each of the proposed mechanisms.

A. The Relaxation Mechanism MR

The relaxation mechanism MR aims to provide a relaxation
PR of the bilevel optimization that is efficient to compute.

PR � min
pŜd,Sgq

}Ŝd � S̃d}2 (16)

s.t.:
��OpSgq �O�

�� ¤ βO� (17)

Sg P CPF pŜ
dq (18)

The relaxation problem PR relaxes the requirement of opti-
mality (O3) and only requires feasibility (18), hence reducing
a bilevel program into single level. The mechanism essentially
restores feasibility of the loads and ensures that there exists a
dispatch Sg that is close to the original dispatch in cost. Since
the relaxation relaxes optimality, the dispatch is not guaranteed
to be optimal, yet it is simpler computationally. A version MR
protecting only active loads was proposed in [18].

B. The Fritz John Mechanism MFJ

A traditional approach to bilevel optimization is to replace
the lower-level optimization by its Fritz John (FJ) conditions
(that generalizes the KKT conditions). If f lpx,yq is the lower-
level objective and glpx,yq are the lower-level constraints
(expressed as inequalities), the FJ conditions are given by

∇yλ0f
lpx,yq �

°kl

i�1 λi∇yg
l
ipx,yq � 0 (c1)

λi ¥ 0 @i P rkls (c2)

λig
l
i � 0 @i P rkls (c3)

where the λ0, λi pi P rklsq are multipliers. Mechanism
MFJ uses a post-processing optimization that augments the
relaxation of the bilevel program with the FJ conditions, i.e.,

PFJ � min
pŜd,Sg,λq

}Ŝd � S̃d}2 (F1)

s.t.:
��OpSgq �O�

�� ¤ βO� (F2)

Sg P CPF pŜ
dq (F3)

pSg, Ŝd,λq P C FJ
BL, (F4)

where λ is the vector of FJ multipliers, C FJ
BL � tpx,y,λq P

Rn�m�kl | (c1), (c2), (c3) holdu, and the FJ conditions (c1),
(c2), and (c3) are for the OPF problem.

MFJ guarantees feasibilty of the OPF for the post-processed
loads. It does not guarantee global optimality of the resulting
model since the lower-level program is not convex.

Even though the optimization problem PFJ is single-level,
it remains challenging to solve, as it is typically rewritten as
a mixed integer non-linear program. Section VII analyzes its
computational behavior for a large number of test cases.

C. The Min-Max Mechanism MM

The relaxation mechanism MR produces the post-processed
loads Ŝd and their associated dispatch Sg that is close to O�.
However, the optimal dispatch Sgo � POPFpŜ

dq may not satisfy
the fidelity constraint

��OpSgo q �O�
�� ¤ βO�.

By optimality of the OPF problem, the following must hold:

OpSgo q ¤ OpSgq ¤ O�p1� βq.

Therefore,
OpSgo q   O�p1� βq.

when the fidelity constraint is not satisfied. The key idea of the
Min-Max mechanism MM is to increase the post-processed
loads in order to increase the corresponding OPF cost above
O�p1 � βq. Intuitively, increasing the amount of loads will
increase the overall dispatch costs to maintain flow balance.
This will also strengthen the chance to satisfy the fidelity
requirement.

Algorithm 1 describes the Min-Max Mechanism, which
operates in two phases. The first phase is responsible for
finding a set of loads Ŝd resulting in an OPF dispatch that
satisfies the β-fidelity requirement (Equation (12)). The second
phase attempts at reducing the distance between the loads Ŝd

and the Laplacian, private, loads S̃d.
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In more details, the algorithm takes as input a parameter
κ, used as a multiplicative factor for increasing the multiplier
λ (introduced later) in the first phase, and a parameter λtol,
expressing the tolerance to control the termination of phase 2.

The first phase is described in lines 3–11 of Algorithm 1.
After initializing the multipliers λ, λl, λu (line 4), it uses the
Relaxation Mechanism introduced in Section VI-A to find a
load vector ŜdR (line 5). The latter is used to seed the iterative
process that searches for a new load vector satisfying the
β-fidelity requirement (lines 6–10). To do so, the algorithm
solves the load maximization problem PMpλ, Ŝ

d
Rq:

argmax }Ŝd} (M1)

s.t.:
��OpSgq �O�

�� ¤ βO� (M2)

Sg P CPF pŜ
dq (M3)

}Ŝd � S̃d} ¤ λ}ŜdR � S̃
d} (M4)

with increasing values of λ ¥ 1.0 until it finds loads Ŝd such
that ��OpPOPFpŜ

dqq �O�
�� ¤ βO�.

Constraint (M4) ensures that the post-processed loads are not
too far from the post-processed loads ŜdR obtained by the
relaxation mechanism MR. Note that, when PM is infeasible,
increasing λ will have no effect if }ŜdR � S̃

d} � 0 (i.e., the
relaxation mechanism returns a zero objective). In this case,
the algorithm replaces (M4) by: }Ŝd� S̃d} ¤ λ �γ where γ is
a small constant to allow feasibility by increasing λ (line 10).

The second phase of the mechanism is described in lines
(12–20). In addition to the tolerance parameter λtol, it takes
as input parameters λl and λu, constructed during phase 1, as
well as the load vector ŜdR resulting by solving the relaxation
mechanism. Its goal is that of decreasing the value of λ
obtained in the first phase to make it as tight as possible.
It does so by using a binary search scheme, where at each
iteration, the value λ is tighten within updated interval rλl, λus
(lines 14–19). The process terminates when the range of the
above interval is smaller than the given tolerance level λtol

(line 17).
In general, phase 1 of mechanism MM is not guaranteed to

terminate. However, it converges when the OPF problem is lo-
cally monotone around Sd for parameter β. The computational
results also show that MM quickly converges on all the test
cases, indicating that the OPF behaves monotonically around
the solution of the bilevel optimization in these configurations.
The next two definitions characterize local monotonicity.

Definition 2 (Load Neighborhood): A load Ŝd is a β-
neighbor of Sd if there exists a dispatch Sg P CPF pŜdq such
that

��OpSgq �O�
�� ¤ βO� where O� � OpPOPFpS

dqq.
Definition 3 (Local Monotonicity): The OPF is locally-

monotone around Sd and β if

}Ŝd1} ¥ }Ŝd2} ñ OpPOPFpŜ
d
1 qq ¥ OpPOPFpŜ

d
2 qq

whenever Ŝd1 and Ŝd2 are β-neighbors of Sd.
The definition of Local Monotonicity is similar, in spirit, to
the monotonicity in [10]. However, local monotonicity only
requires monotonicity around neighboring intervals of Sd,

Algorithm 1: The MM Fidelity Phase.
Inputs : xκ, λtoly

1 ŜdR, λ
l, λu Ð Phase1(xκy)

2 Ŝd ÐPhase2(xλl, λu, ŜdR, λ
toly)

Output : Ŝd
3 Function Phase1(xκy):
4 λÐ 1.0, λl Ð 1.0, λu Ð8

5 ŜdR Ð PRpq
6 for i � 1, 2, . . . do
7 Ŝdpiq Ð PMpλ, Ŝ

d
Rq

8 Sgpiq Ð POPFpŜ
d
piqq

9 if |OpSgpiqq�O�| ¤ βO� then λu Ð λ, terminate;
10 λl Ð λ, λÐ λκ

11 return ŜdR, λ
l, λu

12 Function Phase2(xλl, λu, ŜdR, λ
toly):

13 λÐ λl�λu

2
14 for i � 1, 2, . . . do
15 Ŝdpiq Ð PMpλ, Ŝ

d
Rq

16 Sgpiq Ð POPFpŜ
d
piqq

17 if pλu�λlq λtol then terminate;
18 if |OpSgpiqq �O�| ¤ βO� then λu Ð λ else

λl Ð λ ;
19 λÐ λu�λl

2

20 return PMpλ
u, ŜdRq

instead of a more broad requirement on monotonicity for the
feasible space.

Theorem 6: MM converges when the OPF is locally-
monotone around Sd and β.

Proof. Let ŜdR be a β-neighbor of Sd. First note that

λ ¥ λ1 ¥ 1 ñ }PM pλ, Ŝ
d
Rq} ¥ }PM pλ

1, ŜdRq}

ñ OpPOPFpPM pλ, Ŝ
d
Rqqq

¥ OpPOPFpPM pλ
1, ŜdRqqq

by definition of PM and local monotonicity, which means
that the OPF increases as λ grows. Moreover, there exists a
value λ� for which Sgo � POPFpŜ

dq is a feasible solution to
PM pλ

�, ŜdRq, i.e.,
��OpSgo q �O�

�� ¤ βO�

Sgo P CPF pŜ
dq

}Ŝd � S̃d} ¤ λ�}ŜdR � S̃
d},

where the following condition holds (due to optimality):

}Sd} ¤ }PM pλ
�, ŜdRq}.

By local monotonicity,

OpPOPFpS
dqq ¤ OpPOPFpPM pλ

�, ŜdRqqq.

Finally, by definition of PM , there exists a feasible dispatch
Sgm for PM pλ�, ŜdRq such that OpSgmq ¤ p1� βqO�.

O� � OpPOPFpS
dqq ¤ OpPOPFpPM pλ

�, ŜdRqqq

¤ OpSgmq
¤ p1� βqO�
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follows by definition of the OPF. l

Corollary2: When the OPF is locally-monotone around Sd

for parameter β, mechanism MM solves the OLI problem.
The result above follows from Theorem 6.
Mechanism MM also provides strong accuracy guarantees.

Theorem 7: Load vector Ŝd returned by mechanism MM
satisfies }Ŝd � Sd}2 ¤ pλu � 1q}S̃d � Sd}2.
Proof. At each iteration of Phases 1 and 2, Constraint (M4)
implies

}Ŝd � S̃d}2 ¤ λu}ŜdR � S̃
d}2,

Since the solution ŜdR of the relaxation mechanism PR guar-
antees: }ŜdR � S̃

d}2 ¤ }S̃d � Sd}2, it follows that

}Ŝd � S̃d}2 ¤ λu}S̃d � Sd}2

ùñ }Ŝd � S̃d}2 � }S̃d � Sd}2 ¤ pλu � 1q}S̃d � Sd}2

ùñ }Ŝd � Sd}2 ¤ pλu � 1q}S̃d � Sd}2

where the last line uses the triangle inequality. l

VII. EXPERIMENTAL RESULTS

This section presents an experimental analysis of the three
proposed mechanisms. The results are concerned with both
computational tractability and obfuscation quality. Since the
relaxation mechanism typically does not return an optimal
power flow, the experimental study also reports its distance
compared to the optimal dispatch as returned by an AC-
OPF solver. Finally, the results describe the behavior of the
Min-Max mechanism, including the number of iterations to
converge to an OPF solution.

The experiments are performed on a variety of NESTA
benchmarks [21]. The parameter ε is fixed to 1.0, while the
indistinguishability level α varies from 0.1 to 10 (in p.u.),
and the fidelity level β varies from 10�3 to 10�1 (i.e. from
0.1% to 10% cost difference). The parameter λ in the Min-
Max mechanism is initialized to 1.0 and initially grows by
5% per iteration until an optimal power flow satisfying the
fidelity condition is found. The smallest λ (up to a convergence
tolerance of 10�3) is found subsequently via a binary search,
as described in Algorithm 1. The Min-Max mechanism is
limited to 3000 iterations and 48 hours of runtime. All the
models are implemented using PowerModels.jl [22] in Julia
with the nonlinear solver IPOPT [23].

TABLE II: Polar Laplace Mechanism MPLap: Percentage of
feasible power flows for β � 0.01.

indistinguishability (α) indistinguishability (α)

Benchmark 0.1 1.0 10.0 Benchmark 0.1 1.0 10.0

3 lmbd 96 42 0 39 epri 100 34 0
4 gs 78 42 0 57 ieee 0 0 0
5 pjm 100 92 0 73 ieee rts 98 0 0
6 c 96 6 0 118 ieee 98 0 0
6 ww 50 0 0 189 edin 8 0 0
9 wscc 100 46 0 240 wecc 98 12 0
14 ieee 46 0 0 300 ieee 0 0 0
24 ieee rts 100 0 0 1354 pegase 100 0 0
29 edin 100 100 16 1394sop eir 0 0 0
30 as 0 0 0 1397sp eir 0 0 0
30 fsr 6 0 0 1460wp eir 0 0 0
30 ieee 2 0 0

TABLE III: Convergence (%) with β � 0.01.

Fritz John (MFJ) Relaxation (MR) Minmax (MM)

Benchmark / α : 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

3 lmbd 74 70 32 100 100 98 100 100 100
4 gs 70 70 72 100 100 100 100 981 100
5 pjm 88 86 56 100 100 100 100 100 100
6 c 46 54 26 100 100 96 100 100 100
6 ww 92 68 54 100 100 96 100 100 100
9 wscc 94 64 48 100 100 100 100 981 100
14 ieee 50 30 34 100 96 100 100 100 100
24 ieee rts 74 40 36 100 98 98 100 100 100
29 edin 68 58 54 100 100 100 100 100 100
30 as 44 28 48 98 100 98 100 100 100
30 fsr 66 36 60 100 100 98 100 100 100
30 ieee 46 28 44 100 98 100 100 100 100
39 epri 88 58 44 100 96 94 100 100 100
57 ieee 80 32 12 100 100 100 100 100 100
73 ieee rts 56 30 34 100 94 96 100 100 980

118 ieee 84 46 20 100 98 100 100 100 100
189 edin 20 66 26 100 86 68 100 100 100
240 wecc – – – 100 100 82 100 100 100
300 ieee – – 14 96 84 86 100 100 100
1354 pegase – – – 100 68 74 100 980 100
1394sop eir – – – 100 82 74 100 100 100
1397sp eir – – – 96 76 88 100 100 100
1460wp eir – – – 100 44 62 100 100 100

A. Convergence Rate and Runtime

Table II shows the number (in percentage) among 50 in-
stances that have a valid power flow solution after obfuscating
loads using the Laplace mechanism MPLap. The results indi-
cate that increasing the privacy level causes severe feasibility
issues, with almost no benchmark returning any AC-feasible
solution.

Recall that, even if the MPLap obfuscation produces loads
that satisfy the AC-OPF constraints, the associated OPF costs
do not necessarily satisfy the fidelity requirement. In contrast,
the three methods proposed in the paper, i.e., relaxation
(MR), FJ (MFJ), and min-max (MM) address the fidelity
requirement.

Table III compares MR,MFJ, and MM, showing the num-
ber of instances (in percentages) for which a feasible solution
is found within the runtime limits.

The Fritz John mechanism MFJ has significantly more
convergence issues than the two other mechanisms. In par-
ticular, numerical stability issues arise on the complementary
slackness conditions in many instances that fail to converge.
In general, fewer instances converge when a large amount of
Laplace noise, e.g., α � 10.0, is applied in comparison to a
small amount of noise, e.g., α�0.1. This suggests the presence
of convergence issues when the starting point is far from a
realistic solution.

Mechanism MR exhibits significantly fewer numerical sta-
bility issues, e.g., numerical or convergence issues related to
the non-linear solver. Since it is also used as the starting point
of the Min-Max mechanism, constraint (M4) is replaced by
}Ŝd � S̃d} ¤ λ � γ where γ is a small constant and ŜdR is
replaced by S̃d when the relaxation model did not converge.

Finally, the Min-Max mechanism MM converges almost
always. When it does not, the superscripts indicate the number
of instances that converge to an AC-feasible solution, but reach
the iteration or time limits before finding an OPF solution.

Table IV presents the runtimes (averaged over converged
runs) of the three mechanisms. The Fritz John mechanism is
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TABLE IV: Runtime (sec) results averaged over converged runs and β � 0.01.

Fritz John (MFJ) Relaxation (MR) Minmax (MM)

Benchmark / α : 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

3 lmbd 0.43 0.38 0.61 0.01 0.02 0.02 0.23 0.30 0.12
4 gs 0.35 0.61 0.70 0.01 0.01 0.01 0.79 0.73 0.23
5 pjm 0.92 0.71 1.10 0.02 0.02 0.02 0.38 1.48 0.36
6 c 1.16 1.10 1.44 0.02 0.01 0.02 0.23 0.11 0.24
6 ww 1.37 1.99 2.52 0.02 0.02 0.02 0.23 0.11 0.15
9 wscc 0.72 0.76 0.91 0.02 0.02 0.02 0.52 0.48 0.22
14 ieee 2.38 7.20 6.02 0.03 0.03 0.03 0.69 0.56 0.89
24 ieee rts 30.69 30.35 45.59 0.06 0.20 0.99 1.38 1.52 2.33
29 edin 130.06 123.76 135.70 0.20 0.27 0.34 0.53 43.07 27.78
30 as 10.00 10.10 14.18 0.07 0.09 0.08 0.87 0.98 0.89
30 fsr 8.97 8.96 16.05 . 0.09 0.12 0.07 1.23 1.46 0.80
30 ieee 8.26 11.12 11.71 0.05 0.07 0.07 0.78 1.29 1.26
39 epri 8.46 11.76 26.60 0.08 0.12 0.10 1.09 7.40 1.16
57 ieee 58.42 128.42 146.31 0.11 0.14 0.17 1.35 4.70 9.25
73 ieee rts 172.47 361.65 288.31 0.21 0.29 3.55 5.80 2.66 19.23
118 ieee 112.89 209.39 175.56 0.33 0.37 0.51 8.28 9.82 8.83
189 edin 535.72 440.02 295.17 0.34 0.47 0.53 2.41 55.04 51.81
240 wecc – – – 1.93 2.19 2.26 9.39 111.75 138.48
300 ieee – – 1313.91 1.02 1.37 1.63 455.98 433.03 205.18
1354 pegase – – – 4.76 17.28 14.98 13.53 1613.98 2300.29
1394sop eir – – – 6.23 6.91 7.86 70.06 811.67 804.94
1397sp eir – – – 7.10 8.73 7.31 139.26 923.28 561.29
1460wp eir – – – 7.69 8.96 8.10 194.91 1408.14 732.98
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Fig. 2: Loads from the original dataset and the relaxation
(MR), Fritz John (MFJ), and Min-Max (MM) mechanisms on
the NESTA-57 bus system. α � 0.1 (left) and α � 1.0 (right),
β � 0.1; x-axis/y-axis report the active/reactive components.

often several orders of magnitude slower and does not scale
to large test cases. In contrast, the relaxation mechanism is
extremely efficient even for large instances. Even though the
runtimes for the Min-Max mechanism can be two orders of
magnitude slower than the relaxation mechanism, they remain
well beyond the time limits even for the largest test cases.

B. Accuracy of the Mechanisms

Figure 2 depicts the values of all the loads before and
after the obfuscation process on the NESTA-57 bus system.
After post-processing, the loads are indeed different from the
original ones and the three post-processing mechanisms agree
closely with each other. To compare the differences between
the three mechanisms, Figures 3a and 3b provide a more
detailed view and present the load distances (in L2 norm) of
the Fritz John, relaxation, Min-Max, and Laplace mechanisms
with respect to the original loads, averaged over 50 runs,

for the NESTA-73 and the NESTA-189 test cases. The key
outcome is that the three proposed mechanisms have smaller
distances to the original loads than those reported by the
Laplace mechanism. Not surprisingly, a large α (more Laplace
noise) may lead to infeasible problems (as shown in Table II),
and therefore, the solutions computed by these mechanisms
typically have more considerable distances.

C. Quality of the Relaxation Mechanism

Figures 4a and 4b illustrate the loss in fidelity of the
relaxation and the Min-Max mechanisms. The box-plots re-
port the percentage difference between the OPF cost on the
original and obfuscated loads produced by MR and MM,
i.e., 100 � OpPOPFpŜ

dqq�O�

O� , on the NESTA-57 and NESTA-
189 test cases. Note that the upper and lower quantiles of
the boxplots in Figure 4a(left) coincide with the range of the
data. The results show that the differences can reach up to
10% when β is very small. This highlights the benefits of the
Min-Max mechanism in achieving greater fidelity. The gray
bar indicates the median sample (over 50 instances) and it
mostly overlaps with the outer-bar showing the minimum or
maximum values. This is due to that most of the instances
converge with solutions with active β-fidelity constraint (O2).

D. Analysis of the Min-Max Mechanism

Figures 5 and 6 present two case studies, which use, re-
spectively, the 118-bus and the 240-bus systems, and illustrate
the behavior of the Min-Max mechanism. The figures describe
the generation dispatch costs found by the load maximization
(lines 7 and 15) in Algorithm (1) and by the OPF (lines 8 and
16) (top-left), the evolution of the λ parameter (top-right), the
total active load (MW) (bottom-left), and the load distances
with the respect to the MPLap obfuscated loads and the original
loads throughout the iterative process (bottom-right). The
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(a) NESTA-73 bus system: α � 1.0 (left) and α � 10.0 (right).
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(b) NESTA-189 bus system: α � 1.0 (left) and α � 10.0 (right).

Fig. 3: Load distance (L2 norm) between the obfuscation mechanism, MR,MM,MFJ,MPLap and original dataset.
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(a) NESTA-57 bus system: α � 1.0 (left) and α � 10.0 (right).
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(b) NESTA-189 bus system: α � 1.0 (left) and α � 10.0 (right).

Fig. 4: Percentage difference on the AC-OPF optimal dispatch costs after obfuscation by MR and MM.

shaded region denotes the cost range for the β-neighborhood.
In case study 1, a 5% increase on λ is sufficient to find
post-processed loads satisfying the mechanism conditions (one
iteration of phase 1). The graphs thus show the binary search
to tighten λ (phase 2): λ is decreased until the OPF on
the post-processed loads is not within the bounds specified
by β, before being increased slightly. Case study 2 is the
exact opposite: It requires substantial increases of λ, and the
mechanism spends almost all its time in phase 1, finding post-
processed loads whose OPF value is accurate enough. Note
that the distance with respect to the original loads does not
vary much during these optimizations, highlighting that the
Min-Max mechanism preserves the accuracy of the relaxation
mechanism, although it enforces much stricter constraints.
Observe also the monotonicity of the loads: as λ increases
(resp. decreases), the OPF cost increases (resp. decreases).

E. Extension: OPF Cost Obfuscation

This section illustrates the extensibility of the proposed
post-processing based framework. Suppose that the optimal
OPF objective costs O� cannot be publicly released. To guar-
antee differential privacy, we are thus required to obfuscate the
value O�. The sensitivity of O� to load indistinguishability α
is given by the following expression:

∆O� � max
Sd�αSd

1

���POPFpS
dq � POPFpS

d1q
���
1
.

When POPF is modeled by a convex program, this sensitivity
can be computed exactly and, by Theorem 3, Õ� � O� � z
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Fig. 5: (Case study 1) Dispatch costs, lambda parameter, total
active load (MW), and load distance (L2) on NESTA-118.
α � 1.0, β � 0.1.

where z is drawn from Laplace distribution Lap
�

∆O�

2ε

	
. Here,

half of the privacy budget ε is allocated to protect the value
O� and the other half to protect the load values.

Figures 7a and 7b illustrate the loss in fidelity of the
relaxation mechanism with the obfuscated market costs Õ�

for 50 instances using a DC power flow model.
The two box-plots report the percentage difference be-

tween the obfuscated market costs and the OPF costs with
the post-processed loads produced by MR and MM, i.e.,
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Fig. 6: (Case study 2) Dispatch costs, lambda parameter, total
active load (MW), and load distance (L2) on NESTA-240.
α � 1.0, β � 0.001.

100 � OpPOPFpŜ
dqq�Õ�

Õ�
, on the NESTA-57 and NESTA-189

test cases. The results further indicate relaxation mechanism
can be difficult to maintain fidelity and the differences can
reach more than 60% for the extreme case. In contrast, the
Min-Max mechanism MM preserves fidelity even when the
original costs are obfuscated.

VIII. CONCLUSIONS

This paper introduced the Optimal power flow Load Indis-
tinguishability (OLI) problem to release optimal power flow
(OPF) test cases that preserve load privacy. To solve the
OLI problem, the paper proposed an ideal mechanism that
leverages the post-processing immunity of DP to cast the pro-
duction of a private load as a bilevel optimization problem that
redistributes the noise introduced by a randomized mechanism
to ensure OPF fidelity and accuracy. To meet the computa-
tional challenges of the bilevel optimization, the paper then
introduced three mechanisms that respectively exploit the Fritz
John conditions, a relaxation of the bilevel formulation, and
a Min-Max procedure that alternates between the bilevel re-
laxation and a load maximization, until privacy-preserving and
high-fidelity loads are found. The proposed mechanisms enjoy
desirable theoretical properties. They achieve ε-differential
privacy, ensure that the released dataset can produce feasible
solutions for the OPF problem, and are a constant factor away
from optimality. The mechanisms have been evaluated on the
largest collection of OPF test cases available. Computational
results show that the mechanisms provide orders of magnitude
improvements in accuracy compared to traditional approaches
(e.g., the Laplace mechanism) and preserve the salient compu-
tational features of the test cases. These results indicate that
the proposed mechanisms have the potential to become an
important tool to release sensitive data sets for competitions
and benchmarking.

Future work will be devoted to study theoretical properties
on local monotonicity of OPF problems, and extend the
proposed methods to time-series data.
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[4] G. Fanti, V. Pihur, and Ú. Erlingsson, “Building a rappor with the
unknown: Privacy-preserving learning of associations and data dictionar-
ies,” Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 3,
pp. 41–61, 2016.

[5] A. Greenberg, “Apple’s ”differential privacy” is about collecting your
data—but not your data,” Wired, June, 2016.

[6] S. Vadhan, “The complexity of differential privacy,” in Tutorials on the
Foundations of Cryptography. Springer, 2017, pp. 347–450.
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(a) NESTA-57 bus system: α � 0.1 (left) and α � 1.0 (right).
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[23] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2019.2945069

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://arxiv.org/abs/1411.0359

