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Abstract—This paper considers the problem of releasing
privacy-preserving load data of a decentralized operated power
system. The paper focuses on data used to solve Optimal Power
Flow (OPF) problems and proposes a distributed algorithm
that complies with the notion of Differential Privacy, a strong
privacy framework used to bound the risk of re-identification.
The problem is challenging since the application of traditional
differential privacy mechanisms to the load data fundamentally
changes the nature of the underlying optimization problem and
often leads to severe feasibility issues. The proposed differentially
private distributed algorithm is based on the Alternating Direction
Method of Multipliers (ADMM) and guarantees that the released
privacy-preserving data retains high fidelity and satisfies the AC
power flow constraints. Experimental results on a variety of OPF
benchmarks demonstrate the effectiveness of the approach.

Index Terms—Differential Privacy, Optimal Power Flow,
ADMM, Distributed computing

I. INTRODUCTION

The availability of test cases representing high-fidelity
power system networks is essential to foster research in several
important power optimization problems, including optimal
power flow (OPF), unit commitment, and transmission plan-
ning. However, the release of such datasets poses significant
privacy risks. For instance, revealing the electrical load of
a customer may disclose sensitive business activities and
manufacturing processes, causing significant economic loss.
Indirectly, it may also reveal how transmission operators
operate their networks, raising security issues [1].

Differential Privacy (DP) [2] is a privacy framework that has
been shown effective in protecting sensitive information during
a data release process. It prevents the disclosure of sensitive
information by introducing carefully calibrated noise to the
result of a computation. While DP algorithms could be used
directly to generate privacy-preserving power system data, they
face significant challenges when the released data is required
to preserve domain specific properties, such as preserving the
optimal cost and the feasibility of an AC Optimal Power
Flow (AC-OPF) problem. Naive noise addition can drastically
degrade the fidelity to the original problem of interest and
introduce severe feasibility issues, as shown in [1], [3], [4].
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Fig. 1, reported from [3], emphasizes these results. It shows
the average load distance (as L) between the original and the
privacy-preserving loads for a set of 29 networks, at varying
of the obfuscation parameter o. The percentages of instances
with a feasible AC-OPF solution are shown above the bars.

Interestingly, a recent body of
work has shown that it is possi- 1
ble to release AC-feasible obfus- 8
cated load data that also satisfies
the notion of differential privacy
[3]-[5]. Despite the soundness and
effectiveness of such data release  *| 45, 0%
techniques, these methods rely on o 1- 10
the presence of a trusted data cura- indistinguishabity ()
tor that can collect sensitive loads
from all the system participants.
However, this is impractical in
very large systems with distributed loads and generators (e.g.,
multiple microgrids). Even if the power system is operated
centrally, it is typically owned and controlled by various
parties, e.g., load customers, transmission system operators
(TSO), distribution system operators (DSO), and generation
companies. These parties operate with specific customer and
legal agreements, which render the transmission of proprietary
data to a centralized server infeasible.
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Fig. 1. Average L error and
percentages of feasible AC-
OPF instances.

To overcome these limitations, this paper introduces the
Privacy-preserving Decentralized OPF (PD-OPF), a novel
decentralized and privacy-preserving framework that allows
multiple power system parties to release their data privately
without relying on a trusted data curator. Crucially, the frame-
work guarantees that the released data produces a feasible AC
power flow and that its OPF cost is close to that of the original
OPF. The heart of the mechanism is a distributed optimization
procedure that relies on the Alternating Direction Method of
Multipliers (ADMM) to redistribute the noise introduced by
traditional DP algorithms to satisfy the desired properties. The
proposed mechanism leverages standard DP primitives and can
be easily adopted on top of any existing distributed power
system optimization algorithm.

While the paper focuses on preserving the privacy of
individual loads, the framework is general and can be used to
protect other sensitive quantities (e.g., generator capabilities).

Contributions The key contributions of this work are as
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follows: (1) It introduces PD-OPF, a novel, distributed mech-
anism that relies on ADMM to obfuscate the individual loads
while ensuring AC-OPF feasibility on the obfuscated data. PD-
OPF satisfies the notion of local differential privacy, providing
strong privacy guarantees. (2) Experimental results on a large
collection of OPF benchmarks illustrate that the proposed
approach finds high-quality AC-feasible solutions, and that the
results are comparable to those obtained with a centralized
version with a data curator.

II. RELATED WORK

There is a rich literature on theoretical results of DP (see
for instance [6] and [7]). The literature on DP applied to
power systems includes considerably fewer efforts. Acs and
Castelluccia [8] exploit a direct application of the Laplace
mechanism to hide user participation in smart meter data sets,
achieving e-DP. Zhao et al. [9] study a DP schema that exploits
the ability of households to charge and discharge a battery to
hide the real energy consumption of their appliances. Liao
et al. [10] introduce Di-PriDA, a privacy-preserving mech-
anism for appliance-level peak-time load balancing control
in the smart grid, aimed at masking the consumption of
top-k appliances of a household. Halder et al. [11] propose
an architecture for privacy-preserving thermal inertial load
management as a service provided by load-serving entities.
Finally, Zhou et al. [12] introduce the notion of monotonicity
of DC-OPF operator, which requires that monotonic changes
in the network loads induce monotonic changes in the DC-OPF
objective cost. This enables a characterization of the network,
which is useful to preserve the privacy of monotonic networks.

There are also related work on privacy-preserving im-
plementations of the ADMM algorithm. Zhang et al. [13]
proposed a version of the ADMM algorithm for privacy-
preserving empirical risk minimization problems, a class of
convex problems used for regression and classification tasks.
Huang et al. [14] proposed an approach that combines an ap-
proximate augmented Lagrangian function with time-varying
Gaussian noise for general objective functions. Finally, Ding
et al. [15] proposed P-ADMM, to provide guarantees within a
relaxed model of differential privacy (called zero-concentrated
DP).

The privacy-preserving distributed learning literature fo-
cuses almost entirely on problems whose objective func-
tions are smooth and strongly convex. Additionally, most
approaches suffer one shortcoming: The privacy loss being
provided as a guarantee is a function of the iteration counts
of the algorithm, which can be huge if a large number of
iterations is required to converge to a feasible solution. In
contrast, this work provides bounded privacy loss irrespective
of the number of iterations. It also ensures that the privacy-
preserving data is AC-OPF feasible and that the solution cost
stays close to the original ones.

Model 1 AC Optimal Power Flow: Popg
variables: SY, Vie G; Vi, Vie N; Sy, ¥(i,j) e Eu ER
minimize: O(Sg) = Z 621(%(557))2 + ClL%(S?) + coi
€N
subject to: £V; =0, I3se N
vE<|Vi| <ol VieN
—05 < Z(V;V}) <65 V(i,j) e E
59 <89 < S VieGS N
1Si;| < sty V(i,j)e Eu ER
d .
S7 =8¢ =X jyeponr Sij Vie N
Sij = YEVi]? - YEV,VF (i,j) € E L ER
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III. PRELIMINARIES
A. Optimal Power Flow

Optimal Power Flow (OPF) is the problem of determin-
ing the most economic generator dispatch to meet the load
demands in a power network. A power network A can be
viewed as a graph (N, E) where the set of buses N = [n]
represents the nodes and the set of lines and transformers
E < {(i,j) € N x N} represents the directed arcs. The paper
denotes with G and L as for the set of generators and loads in
the network, and uses E’ to indicate the set of arcs, but in the
reverse direction. The AC-OPF problem (Fppr) is specified in
Model 1, where I,V,Y, and S denote the complex quantities
for current, voltage, admittance, and power, respectively.

The model takes as input the power network A and
returns the optimal generator dispatch costs (with ties broken
arbitrarily). The objective function O(S9) captures the cost
of the generator dispatch, with S9 = (S7,...,S2) denoting
the vector of generator dispatch values. Constraint (2) sets the
reference angle to zero for the slack bus s € N to eliminate
numerical symmetries. Constraints (3) and (4) capture the
voltage and phase angle difference bounds. Constraints (5)
and (6) enforce the generator output and line flow limits.
Finally, constraints (7) capture the Kirchhoff’s Current Law
and constraints (8) capture the Ohm’s Law. The solution
set satisfying constraints (2) to (8) for a given set of load
demands S = (S¢,...,S%) is denoted by €pr(S?). Table I
summarizes the common notations used throughout the paper.

B. Alternating Direction of Multipliers Method (ADMM)

ADMM is a widely used distributed procedure solving
optimization problems with coupling constraints. Consider an
optimization problem of the following form:

in f(x) +g(z)
st. Ax+ Bz = ¢, 9)

where X € R™ and Z € R™ are two disjoint sets, € R"”
and z € R™ denote variable vectors owned by two distinct
groups of agents, and Ax + Bz = c describes the set of
coupling constraints between the two groups of agents with
A e R>*" B e R>*™ and ¢ € R’ The functions f and
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TABLE I

COMMON NOTATION

USED IN THE PAPER.

N Power network € Privacy budget

S9 Vector of power generator dispatch « Indistinguishability value

S Vector of load demands B Faithfulness value/parameter

Popr Function solving AC-OPF, with input S¢ and output S9 O* The optimal costs of the original problem

Grr The set of feasible AC power flow for Popg x A vector of variables/values

Mg A mechanism of z xl, ¥ Upper and lower bounds of quantity x

Py The optimization problem for the accuracy phase of M R(-),3(-) Real / imaginary component of a complex number
Y* 1% V¥ Conjugate of admittance matrix Y, current I, and voltage V' ca2,cC1,C0 Cost function coefficients

AL A9, AV AS  Lagrange multiplier for load, generation, voltage, and power flow  p ADMM penalty parameter

g denote the objectives over x and z, respectively, and are
commonly assumed to be convex. The augmented Lagrange
function L,(x, z, X) of (9) is:

f(x)+9(z) + AT(Az + Bz —c¢) + gHA:c + Bz —¢|3

where X € R is a vector of Lagrangian multipliers, with p >
0 representing the penalty parameter. The vector of Lagrangian
multipliers are the dual variables associated with the coupling
constraints Ax + Bz = c.

Given a solution tuple (x¥,2* AF) at iteration &,
ADMM [16] proceeds to the next iteration, k + 1, computing
(xF 1, 2k XR+1) ag follows, in three sequential steps:

" = argmin L, (z, 2", AF) (10)
xeX

2F = argmin L, (2", 2, AF) (11)
zeZ

AL = AP p(AxF T 4 B2R —¢). (12)

The algorithm terminates when a desired termination condition
(e.g., an iteration limit or a convergence factor) is reached. The
quality of the solution at iteration k can be measured by the
primal infeasibility (residue) vector [17]

r’; = Az* + BzF — ¢, (13)

indicating the distance to a primal feasible solution, and the
dual infeasibility (residue) vector [17]

i = pATB(z" — 2F7), (14)

indicating the distance from the previous local minima. When
both infeasibility vectors are zero, ADMM converges to a
(local) optimal and feasible solution.

C. Differential Privacy Notions

The need for data privacy emerges in two main contexts:
the global context, as in when institutions release datasets
containing information of several users or answer queries on
such datasets (e.g., US Census queries [18], [19]), and the
local context, as in when individuals disclose their personal
data to some data curator (e.g., Google Chrome data collection
process [20]). In both contexts, privacy is achieved through a
randomizer M adding noise to the data before releasing.

Differential privacy [2] (DP) is an algorithmic property that
characterizes and bounds the privacy loss of an individual

when its data participates into a computation. It has originally
been proposed in the global privacy context and, informally,
ensures that an adversary would not be able to reliably
infer whether or not a particular individual participates in
the dataset, even with an unbounded computational power
and access to every other entry of the dataset. The setting
adopted in this work studies the local privacy context (Local
Differential Privacy [21], aka LDP), in which each load
customer ¢ holds a datum, S;-i € C, describing the complex
load consumption of the bus 7 € N. While the standard local
differential privacy framework is concerned with protecting the
participation of an individual into a dataset, in a power system,
the individual identity is not a sensitive information: It is a
public knowledge that each bus may connect to a demand. The
sensitive information is represented by the load magnitude. To
accommodate such notion of privacy risk, the paper uses the
definition of generalized differential privacy for metric spaces
[22] and adapts it to the local differential privacy context.
Without loss of generality, we focus on Lebesgue spaces L*,
and in particular, consider the complex space C equipped with
norm 1. For a given value o > 0, a randomized mechanism
M is e-LDP for « distances (a.k.a. local a-indistinguishable),
if for all x and 2’ € C s.t. |z — 2'||; € «, and for any output
response o € C:

Pr[M(z) = o] € e Pr[M(z') = o]. (15)

where the probability is computed over the randomness of
M. A mechanism satisfying Definition 15 ensures that its
output cannot differ to much, if run on similar inputs (i.e.,
inputs differing on a single value by at most «). In other
words, the definition ensures that an attacker obtaining access
to a privacy-preserving load value cannot detect, with high
probability, the distance between the privacy-preserving value
and its original value. The level of privacy is controlled by
the privacy loss parameter € > 0, with small values denoting
strong privacy. The level of indistinguishability is controlled
by the parameter > (0. The above definition allows us to
obfuscate load values that are close to one another while
retaining the distinction between those that are far apart.
Local Differential Privacy (LDP), including its extension for
generic metric spaces, satisfies several important properties. In
particular, it is immune to post-processing as defined in the
following theorem.
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Theorem / (Post-Processing Immunity): [6] Let M be an
e-(local) differentially private mechanism and g be an arbitrary
mapping from the set of possible output sequences to an
arbitrary set. Then g o M is e-(local) differentially private.

IV. DECENTRALIZED LOAD OBFUSCATION

The decentralized load obfuscation problem is the problem
of coordinating the release of privacy-preserving load data in
a power system owned and controlled by multiple parties. We
consider a set of agents, each coordinating some power system
component, e.g., loads, generators, buses, or power lines. The
goal of the problem is to release load data, which is controlled
by the load agents.

The problem has three desiderata. (1) It requires obfuscation
of the loads up to some amount o > 0. (2) It requires that the
AC-OPF objective induced by the obfuscated loads is close to
that attained using the original data. (3) It requires its agents
to coordinate the data release process using a decentralized
and confined communication process.

Formally, the decentralized load obfuscation problem finds
the active and reactive, privacy-preserving load values S“ld for
each load agent 7 € N that satisfy the following criteria:

1) Privacy: The original load S¢ and its privacy-preserving
counterpart S’f are local a-indistinguishable, for every
load 7 € N.

2) Fidelity: For every generator i, the optimal AC-OPF
dispatch cost (’)(S”f ) obtained by using the obfuscated
loads S¢ is required to be close to the original AC-OPF
dispatch cost O(SY) up to a user-defined factor 3 > 0:

|0(89) — O(S9)| < BO(S?) Vie N.

Finally, it requires the computation mechanism to be per-
formed in a decentralized fashion. In the following, we denote
with OF as for the original optimal generation costs O(SY),
which are assumed to be publicly known [5] (e.g., from the
market information). When such information is not publicly
available, then it could be (privately) estimated. Notice that,
as studied in [3] when some information is publicly available,
the attacker posterior about the input dataset after observing
the output of a DP algorithm remain bounded with respect to

its prior '.

V. THE PD-OPF MECHANISM

This section introduces the Privacy-preserving Distributed
OPF (PD-OPF) mechanism to solve the decentralized load
obfuscation problem. PD-OPF agents operate in two phases:

1) Privacy Phase During the first phase, each load agent
i € N applies a LDP protocol to obtain an a-local
obfuscated version S¢ of its original load S¢. This
process is executed independently and autonomously by
each load agent in the system.

A straightforward corollary is that if the prior knowledge is the dataset
itself, then no privacy mechanism can be used to modify such knowledge. An
example will be revealing the dispatch cost of a small power grid containing
only one generator and one load.

2) Fidelity Phase In the second phase, the agents coordinate
a distributed process to adjust the private load values Sld,
to new values S? that achieve the fidelity goal, while
deviating as little as possible from the local a-obfuscated
loads S¢.

The next sections describe in details the PD-OPF phases.

A. Privacy Phase

In the privacy phase, each (load) agent ¢ perturbs its load
data S¢, independently from other agents, so to generate an a-
local indistinguishable load gﬁ. To do so, the agents use a ver-
sion of the Laplace Mechanism, a method used to guarantee an
e-LDP private responses to numeric functions [6]. The Laplace
distribution with 0 mean and scale £, denoted by Lap(¢), has

lz]

a probability density function Lap(z|{) = 2%6_ ¢ . Consider
a function f a numeric function that maps datasets to R and
let z be a random variable drawn from Lap (§) where £ = <
The following theorem provides an LDP mechanism.

Theorem 2 (Laplace Mechanism): The Laplace mechanism
that outputs f(z) + z achieves «-local indistinguishability.

Since the load data is represented in the complex form,
agents use the Polar Laplacian mechanism [3], [23], which
is a generalization of the Laplace mechanism to Euclidean
spaces. The mechanism satisfies a-local obfuscation [3], [22].
For simplicity, the paper refers to the the Laplace mechanism
as for the Polar Laplace mechanism.

B. Fidelity Phase

While simply adding Laplace noise to each load satisfies
local a-indistinguishability, the resulting power system data
may no longer be AC feasible, nor it may induce a similar
optimal dispatch costs. To find a set of loads S? that satisfy
the fidelity criteria, a post-processing step that uses a bi-level
program Ppg; can be formulated as follows [3]:

PR

Pgr, = min |S¢— 872 (16)
st: |O(89) — 0*| < BO* (17)
89 = Popr(8%). (18)

The upper level objective Eq. (16) minimizes the L2 distance
between the noisy loads S and the (post-processed) load
variables S¢. Constraint (18) captures the AC-OPF require-
ment. It computes an AC optimal generator dispatch S9 for
the post-processed loads S Finally, Constraint (17) requires
the generator dispatch to satisfy the fidelity goal.

Solving bilevel programs is challenging computationally,
being strongly NP-Hard [24]. To address the underlying com-
putational challenge, an efficient relaxation of problem Pgpj,
can be provided as in [3]:

PgpL = min ||S? — S| (19)
s.t.: |(’)(Sg) — (’)*| < BO* (20)
AC Power Flow: (2) — (8). 21

It relaxes the optimality requirement Eq. (18) and only requires
AC feasibility (Eq. (21)). The mechanism restores feasibility
of the loads and ensures the existence of a dispatch whose
cost is close to the optimal one.
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Fig. 2. The ADMM-based LDP post-processing step of PD-OPF.

C. Decentralized Fidelity Phase

To coordinate the resolution of problem Pgpp in a decen-
tralized fashion, the problem is expressed into the format of
Eq. (9) and solved using an ADMM protocol. The ADMM
mechanism used follows the component-based dual decompo-
sition framework [17], [25] and models each power system
component as an individual agent. The framework considers
four types of agents: load demand agents D, generator agents
g, line agents £, and bus agents B. Figure 2 illustrates the
ADMM communication scheme adopted by each agent (i € NV,
if it is a bus, load, or generator agent), or ((,5) € E, if it is
a line agent).

It is summarized in the following three steps. At each
iteration:

1) Load, generator, and line agents compute their individ-

ual consensus variables, respectively, Sld b ) for load

agent 1, Sq for generator agent i, and SZJ , ZSL)
(and S J(zL), Vj(l ) for the reverse direction) for line agent

(@ ) Collectlvely, they form a consensus vector T
(57 579, S0 Vi S5V (see Bq. (10,
which is sent to their connecting bus agents.

Upon receiving its neighboring load, generator, and line
consensus variables, bus agent 17 computes the response
value z = <S,£i(B), Sf S(B) V > (see Eq. (11)) and
send value Sfl 5 to load agent %, value S; 9(B) o generator
agent ¢, and values Si(jB), V(B)
line (¢, j) connected to bus 7.
Finally, each agent updates its corresponding dual vari-
ables in the complex domain C: A\¢, for load agent
i, AY, for generator agent i, and )\};, )\f;, for line
agent (i,7). Collectively, they are identified with A =
N, N A7), using the notation in Eq. (12).

17

The goal of the coupling constraints Ax + Bz = c (see
Constraint (9)) is that of matching the states values z of
the bus agents to those of their connected components .
The fidelity constraint (Eq. (20)) and the AC Power Flow

2)

to line agent (ij), for each

3)

Model 2 ADMM: Load agent D;(Poaq)

inputs: (p, \¢, 5S¢, Sf(B)>

variables: Sd(D )
minimize: ||Sg(D) — S22 Sg(D) + gHSZFl(D) _ Szfi(B)Hz 22)
Model 3 ADMM: Generator agent G;(Pye,)
inputs: {p, Af,(’);",sgw))

variables: Sf(G)
minimize: 7 - 57(%) - 57 — 572 23)
local constraints: Sz.gl < Sf(G) < 59U 4)
Or1-p <o <oratn )

constraints (Eq. (21)) are enforced as local constraints by each
agent. Finally, the load agents control the minimization term
Objective (19) of problem Prpy,, to control the deviation of the
new, post-processed load w.r.t. the Laplace obfuscated coun-
terpart. A detailed description of the individual optimization
problems computing the local Lagrange functions (Eq. 10) for
the load, generator, and line agents, and (Eq. 11) for the bus
agents is given as follows. 2

Load agent The optimization step performed by each load
agent ¢ (1 € N), at each iteration, produces a load value
Sid (P) and is shown in Model 2. Eq. (22) captures the load
augmented Lagrange function (see Eq. (19)) and the agent
coupling constraints described as penalty terms. The first term
of the objective is the L2 distance between the load value
S;i D) and the Laplace load value S¢. The remaining terms
correspond t0 the load coupling constralnt matching the load
values Sfl (P) {0 the feedback signal S B from the connecting
bus.

Generator agent The objective of the generator agent i
(# € N), at each iteration, is that of producing a dispatch
value SY (@) that matches the feedback signal S? B) from the
connecting bus. The problem is reported in Model 3. Therein,
Eq. (23) describes the generator agent coupling constraints
as penalty terms. The optimization model ensures that the
dispatch values satisfy the feasible bounds (Eq. (24)), and
that the dispatch cost stays within the fidelity requirement
(Eq. (25)).

Line agent The objective of the line agent (i) ((i,§) € B), is
that of ﬁndmg flow values S ) and S and voltage values

VZ(L) and V ) (. voltages on each s1de of line (4, 7)) that

match the correspondlng feedback signals Si(j ), Vi(B)

Sj(fg), V( ), computed by the buses ¢ and j, respectively.
The optlmlzation is illustrated in Model 4. It describes four
coupling constraints: two associated to the voltage values
and two associated to the flow values (Eq. (32)). The model

also ensures the voltages and power flows are within the

2To simplify the notations, (-) is used to represent the complex dot product.
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Model 4 ADMM: Line agent L; ;(Pine)

inputs: (p, A5, AV, S ViP5 AV
(L) (L) (L) (L)
Sz’j ijq', ’Vij 7ij'

- S+ v+
(e, el (.3),(G.0)}

(B) y/(B)

Ji

variables:

minimize:

p
SUsey =sEPP w1V v s
local constr. LVi(jL) =0, ifi=s; A\/j(iL) =0, ifj=s; 27
oL < VP <k, Ve 1) € {(,4), (G.0)} 28)
— 05 < 2V PV P*) <08 (29)
55| < sy, Ve, £) € {(i.4), (3.0} (30)
(L) _ vy (D)2 s (L) (L)%

Sef - Yef|vef | _Yefvef Vef

Ve, ) e {0, G} GD

Model 5 ADMM: Bus agent B;(Ppyus)

inputs: (p, A%, Sg(D)v A, Sf(G)>,
8 SN VI G, 5) € B ERY

variables: Sid(B)7 Sf(B),Vi(B), ng)v(i7j) eBu Bl

minimize: )\? . S;i(B) + g”S;i(B) - Sf(D)H2+

)\g . Sf(B) + g”Sf(B) _ Sig(c)”2+

(i,j)eEVER
B 14 B L
)\ZV],.VZ_( >+§Hvi( )_Vz‘g )HQ]

R D e
i i ij
(i,j)EEUER

B 14 B L
S s+ 5Hsgj e [

(32)

local constraint: (33)

feasible bounds (Egs. (28) to (30)), and that the AC power
flow constraints are satisfied (Eq. (31)). The voltage angle
LVZ.S.L) / LVJ.(Z.L) is zero if it connects to a slack bus (Eq. (27)).

Bus agent At each iteration, bus agent ¢ performs the opti-
mization described in Model 5. Its 0b<jective is that of finding
load value Sid (B), generator value Sf B), voltage value VZ-(B),
and flow values Si(f), for each connecting line (i,5) € EUER,
that match the state variables sent from the load, generator,
and line agents, respectively. The model also ensures the

satisfaction of the flow balance constraint (Eq. (33)).

ADMM Coordination Process The ADMM algorithm that
coordinates all agents is illustrated in Algorithm 1. Lines 1 to
3 initialize all variables associated with the load, generator,
and line agents, respectively. Each of these agents, hence,
perform their optimization step (lines 6 to 8), independently
from one another, and send their (consensus) variables to
the corresponding bus agents. Upon receiving the consensus
variables from each of their neighboring agents, the bus agents
perform their associated local optimization step and send the
feedback values back to the corresponding load, generator, and
line agents (line 10). Finally, the multipliers variables A are
updated by each individual agent (lines 12 to 14). At the end of
each iteration, the parameter p can be updated. The algorithm

Algorithm 1: ADMM: Main routine
: <N7 Pinit, t'mu,m>, <g{i‘V’Dl>’ <O:I=|vgl>

1 p < Pinit
2 4 5E 0,0y vDi; (N, 57 - €0,0) VG
B B L
3 (A5, 80y 00,00 A AL V) 0,0y Vig) € L
4 fort=1,2,...,tmaz do
5 Optimization of load, generator, and line agents
D : 52 Pioaa (o, 2, 52,51
VGi : S99 Puen ((p, N9, 0%, 59(P)y)
v SOV SOV e
Piine p A5, A, S VIR A8 AV () v(B)y)
9 Optimization of bus agents
vB; : 577 s9B) y B (B
d(D G L L
Pbus(<p7 7)‘5]’ Sz ( )7 7>\i‘]7 Sf( )>> <7)‘ff» Séf)v 7)\;/‘)0: Ve(f )>)
Lagrange multiplier update
VD; and B; : A4« Ad + (S4P) _ gd(B)y
VG and B : A9« A + (59(9) — 59(B)y
VLij and Bi/Bj : A5« A5 + (s§f3 —SPHAY
(L) (B)
A+ (VS v
Coordinating agent penalty p update (optional)
p < update_p()

Output : S¢

Inputs

® 9

11
12
13
14

15
16

is executed for t,,,, iterations and the overall communication
complexity is in O(tmas(|N| + |E])).

The ADMM coordination process described above is similar
to that introduced in [17]. However, differently from other
proposals, that use ADMM for solving an OPF, the ADMM
scheme used by PD-OPF is used for the distributed resolution
of problem Pgp. It redistributes the noise introduced by the
Laplace mechanism optimally to satisfy the fidelity criteria.

Theorem 3: PD-OPF satisfies local a-indistinguishability.
Proof. By Theorem 2, the load values obtained by the applica-
tion of the Laplace mechanism satisfy a-local indistinguisha-
bility. The ADMM mechanism makes use of exclusively the
privacy-preserved load values S (computed by the application
of the Laplace mechanism), as well as additional public
information (e.g. the local cost values OF). Therefore, by post-
processing immunity of differential privacy, PD-OPF satisfies
local a-indistinguishability. O

VI. EXPERIMENTAL RESULTS

This section reports on the obfuscation quality and ability
to converge of PD-OPF. Additionally, the proposed method is
compared with a centralized version that solves problem Prgpy,
thus admitting the presence of a centralized data curator. The
experiments are performed on a variety of NESTA [26] bench-
marks. Parameter e is fixed to 1.0, the indistinguishability level
« varies from 0.01 to 0.1 in p.u. (i.e. 1 MVA to 10 MVA),
and the fidelity level 3 varies from 1072 to 10~! (i.e. from
1% to 10% of the optimal cost difference). PD-OPF is limited
to use 5000 iterations. All the models are implemented using
PowerModels.jl [27] in Julia with nonlinear solver IPOPT [28].

Choosing a fixed penalty factor p to drive convergence is
challenging [17]. Thus, the experimental routine adjusts p
dynamically, using the maximum primal and dual infeasibility
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Fig. 3. Dispatch costs differences between the optimal and the PD-OPF
solution (PD-OPF) and its centralized AC-OPF counterpart. IEEE 39 (top) &
IEEE 57 bus (bottom), o = 0.01 (left), 0.1 (right), 3 = [0.1,0.01]. PD-OPF
mechanism: blue bars; centralized AC-OPF: brown bars.

values, €, = maxr, and ¢; = maxrq, respectively (in spirit
of [17]). Higher values of p encourage the satisfaction of
the primal constraints, while lower values shift weights to
the objectives and reduce the dual infeasibilities [17]. The
heuristic adopted changes p when the distance between ¢, and
€4 becomes too large:

p = min{(1 + ¢)p, p}, if €, > creq,

p= max{%_;_c,g}, if €q > ciep.
The scaling factor c is set to 2%, the threshold parameter ¢; to
7.0, and upper p and lower p bounds to 10° and 5, respectively.
To allow PD-POPF to restore primal feasibility, a feasi-
bility boosting procedure is implemented as follows. When
the iteration counter 4500 iterations, if the maximum primal
infeasibility is larger than 1073, p will be increased by:
min{(1 + ¢)p, p}. We call this phase feasibility boosting.

A. Quality of Fidelity Restoration

Let O* and O to be the optimal dispatch costs for the orig-
inal and obfuscated loads respectively. Figure 3 illustrates the
average percentage difference on the dispatch cost differences
between the original and obfuscated loads produced by PD-
OPF: 100 x O(’Qf* . Since a PD-OPF implements a relaxation
of Constraint (18), the Figure also reports a comparison using
a centralized procedure that solves an AC-OPF with the PD-
OPF loads as input. The experimental results indicate that PD-
OPF is able to restore the problem fidelity well, even when the
fidelity requirement ( are as small as 0.01% of the original
costs.

Lap. e Orig.
- a=0.01
3 A
L Ad X grgih
5 0 ° ™ A&fﬁéé ®
© A A A A
o A"
[} A
>
5 =5 A
9]
@©
[ T T -
o 0 5 0 5

Active Load (p.u.) Active Load (p.u.)

Fig. 4. Loads from the original dataset and the Laplace & the PD-OPF
Mechanisms on the IEEE-57 bus system, at varying of the indistinguishability
value o 0.005 (left) and « 0.01 (right) with 5 = 0.1. PD-OPF
mechanism: green triangle; Laplace mechanism: yellow cross; Original: blue
dot.

B. Quality of Load Demand Obfuscation

Figure 4 depicts the original load values (Orig.) associated
to the IEEE-57 bus systems, and compares them with those
generated by the Laplace mechanism (Lap.) and by PD-OPF.
The figure illustrates that the post-processing step used in PD-
OPF modifies the original loads. Since the Laplace mechanism
does not converge to an AC feasible solution, PD-OPF further
modifies the Laplace-generated loads. The figure does not
report the AC-feasible loads due to large overlaps with PD-
OPF values.

C. Quality of Privacy Loss Minimization

Figure 5 illustrates the difference between the loads pro-
duces by PD-OPF and those produces by a centralized imple-
mentation of problem Prpy [5]. The difference is measured in
terms of distance from the Laplace obfuscated loads (averaged
over 50 instances). The differences in the IEEE-39 test case
are due to the feasibility boosting phase, activated to improve
the primal feasibility. In the other test cases the differences
between the two approaches are negligible, thus validating
the use of a decentralized solution for releasing loads when a
centralized trusted data curator is unavailable.

D. Convergence Quality & Runtime

Finally, table II presents the maximum and dual infeasibil-
ities (in p.u.), before and after (marked with =) activating the
feasibility boosting procedure. The table clearly illustrates the
benefits of the boosting procedure. It is able to reduce the
primal infeasibility of up to two order of magnitude, albeit at
a cost of a larger dual infeasibility.

Figure 6 illustrates the details of one run on the IEEE-39
benchmark. After a few iterations, both the primal and the dual
infeasibilities stabilize in the range [10%, 10~!] (top-left), and
the generator costs stabilize after 2000 iterations (bottom-left).
When the feasibility boosting is activated, the coordination
agent increases the parameter p (bottom right), inducing all
agents to re-optimize with a higher penalty for violating the
coupling constraints. This is obtained at a cost of a larger dual
feasibility (top-right).
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TABLE 11
PRIMAL & DUAL INFEASIBILITY, AND SIM. RUNTIME. @ = 0.1, B =0.1.
| | Primal Primals | Dual Dual# | Time (min.) |
nesta_case3_Ilmbd 0.036 0.001 0.173 0.079 1.147
nesta_case4_gs 0.023 0.001 0.092 13.953 2.110
nesta_case5_pjm 1.580 0.015 3.094  380.243 3.501
nesta_case6_c 0.203 0.001 0.835 7.088 2.607
nesta_case6_ww 0.094 0.001 0.419 7.919 3.215
nesta_case9_wscc 0.197 0.001 1.224 5.908 2.776
nesta_casel4_ieee 0.579 0.001 2.228 19.762 5.141
nesta_case24_ieee_rts | 0.293 0.006 1.276 540.403 11.157
nesta_case29_edin 0.216 0.128 2.393  3027.724 38.686
nesta_case30_as 0.386 0.001 1.685 15.223 12.592
nesta_case30_fsr 0.416 0.001 2215 14.001 10.738
nesta_case30_ieee 0.621 0.001 2.831 37.137 11.167
nesta_case39_epri 0.291 0.026 1.597 1849.358 15.273
nesta_case57_ieee 0.584 0.001 2.951 62.776 19.614
nesta_case73_ieee_rts | 0.402 0.008 2.762 691.576 45.131
nesta_casel 18_ieee 0.968 0.004 4.427 394.885 82.160
nesta_casel189_edin 3.214 0.017 | 14.780 871.245 86.908
-~ 15000 —— Primal Infeas. =600 —— Primal Infeas.
2 Dual Infeas. 2 Dual Infeas.
"% 10000 o
2 £ 400
;_§ 5000 5
E E 200
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Fig. 6. IEEE-39 bus: Primal €, and dual ¢, infeasibilities (Full-scale: top left,
> 4400 iterations: top right), generator dispatch costs (bottom left), penalty
p (bottom right); « = 0.1, 8 = 0.1. The vertical dotted line marks the
activation of the boosting procedure.

VII. CONCLUSION

This paper presented a framework for releasing privacy-
preserving OPF load data of a decentralized operated power
system. The proposed framework, called Privacy-preserving
Distributed OPF (PD-OPF), is based on the Alternating Direc-
tion Method of Multipliers (ADMM) and satisfies the notion
of differential privacy to guarantee strong privacy protection
for the customer loads while also ensuring that the released
data retains high fidelity and satisfies the AC power flow
constraints. The key component of PD-OPF is a distributed

optimization procedure that redistributes the noise introduced
by traditional DP algorithms to satisfy the desired properties.
Extensive experimental evaluations on the NESTA benchmark
showed that the PD-OPF can be used to generate privacy-
preserving data providing high-quality AC-feasible solutions
and that the results attained are comparable with those ob-
tained by a centralized routine approach.

A fine-tuning of the ADMM parameters, including the effect
of variable initialization will be subject of future investigation.

APPENDIX

A. PD-OPF with the Piecewise Mechanism

The PD-OPF framework can also be extended to work with
other Local Differential Privacy mechanism (LDP). Instead
of using Polar Laplace mechanism in the Privacy Phase, this
section showcases another LDP mechanism: the Piecewise
Mechanism [29]. The Piecewise Mechanism also satisfies the
L'¢-LDP for o distances definition. It requires all input data
x; to be normalized within [—1, 1] from [z;,Z;]. Let:

€/2a
e +1
C= €€/2OL _ 1’
1 -1
L(.’Iﬁl)ZC;— .’Ei—CQ 7I:ll‘ld
R(x;) = L(x;) + C — 1.

The mechanism perform obfuscation based as in Algorithm
2. To implement the Piecewise Mechanism, linear transforma-
tions are used by each of the load agents D; to normalize active
and reactive parts of the load value Sfl into [-1,1]. To transform
from a bounded domain x; € [x;,T;] to y; € [—1, 1] (and vice
2.
Table III shows the primal and dual convergence quality
and simulation runtime similar as in previous section. Figure 7

versa), the following equation is used: y; =

XT;—x;

Algorithm 2: Piecewise Mechanism for LDP

17 Sample p ~ Uniform([0, 1])
18 if p < ee/;/% then

19 | Sample Z; ~ Uniform([L(x;), R(z;)])

20 else

21 L Sample Z; ~ Uniform([—C, L(z;)] v [R(z:), C])

22 Return 7;
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shows the fidelity can again be restored by the ADMM mech-
anism. Figure 8 shows comparable obfuscation quality when
comparing to the Laplace mechanism in Figure 4. Finally,
Figure 9 shows the ADMM algorithm can achieve comparable
privacy loss minimization results to centralized optimization.

TABLE III
PRIMAL AND DUAL INFEASIBILITY, AND SIMULATION RUNTIME.
a=0.1,8=0.1.

\ | Primal Primal# | Dual Dual# | Time (min.) |
nesta_case3_lmbd 0.001 0.001 | 0.015 0.015 0.089
nesta_case4_gs 0.031 0.001 | 0.151 11.733 3.505
nesta_case5_pjm 1.820 0.015 | 3.290 382.929 3416
nesta_case6_c 0.006 0.001 | 0.038 0.180 0.479
nesta_case6_ww 0.217 0.072 | 1.064 20667.869 4.165
nesta_case9_wscc 0.023 0.001 | 0.119 1.596 1.445
nesta_casel4_ieee 0.085 0.001 | 0.392 5.402 8.722
nesta_case24_ieee_rts | 0.133 0.008 | 0.859 611.856 11.294
nesta_case29_edin 0.197 0.098 | 2.676 3810.460 82.134
nesta_case30_as 0.161 0.001 | 0.847 5.090 9.244
nesta_case30_fsr 0.050 0.001 | 0.250 1.525 9.824
nesta_case30_ieee 0.211 0.001 | 1.074 9.788 9.714
nesta_case39_epri 0.920 0.020 | 4.371 1029.756 37.142
nesta_case57_ieee 1.201 0.001 | 4.947 104.336 40.772
nesta_case73_ieee_rts 0.219 0.011 | 1.654 777.139 43.815
nesta_case189_edin 1.432 0.016 | 6.904 799.463 83.319

- 10 Mechanism
10 Mechanism m= PD-OPFel AC-OPF
Bm PD-OPF w7z AC-OPF
5 R 5

g 2 o *, /(/ ——
e —_—— °
g -3 g
I 2 _10
g -10 g

—15 =15

-20 01 0.01 20 0.1 0.01

B B
Fig. 7. IEEE 57 bus. Percentage Difference on the Dispatch Costs af-

ter ADMM mechanism and AC validation: o« = 0.01 (left), 0.1 (right),
£=[0.1,0.01]. Average over 50 instances. PD-OPF: blue bars; AC-OPF: brown
bars.
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Fig. 8. Loads from the original dataset and the Piecewise Linear & ADMM
Mechanisms on the IEEE-57 bus system, at varying of the indistinguishability
value @ = 0.005 (left) and « = 0.01 (right) with 8 0.1. PD-
OPF mechanism: green triangle; Piecewise Linear mechanism: yellow cross;
Original: blue dot.
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