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The growing dependence of electric power systems on gas-fired generators to balance fluctuating and intermittent produc-

tion by renewable energy sources has increased the variation and volume of flows withdrawn from natural gas transmis-

sion pipelines. Adapting pipeline operations to maintain efficiency and security under these dynamic conditions requires

optimization methods that account for substantial intra-day transients and can rapidly compute solutions in reaction to

generator re-dispatch. Here, we present a computationally efficient method for minimizing gas compression costs under

dynamic conditions where deliveries to customers are described by time-dependent mass flows. The optimization method

uses a simplified representation of gas flow physics, provides a choice of discretization schemes in time and space, and

exploits a two-stage approach to minimize energy costs and ensure smooth and physically meaningful solutions. The

resulting large-scale nonlinear programs are solved using an interior-point method. The optimization scheme is validated

by comparing the solutions with an integration of the dynamic equations using an adaptive time-stepping differential

equation solver, as well as a different, recently proposed optimal control scheme. The comparison shows that solutions

to the discretized problem are feasible for the continuous problem and also practical from an operational standpoint. The

results also indicate that our scheme produces at least an order of magnitude reduction in computation time relative to the

state-of-the-art and scales to large gas transmission networks with more than 6000 kilometers of total pipeline.

Key words: nonlinear control, optimization, natural gas pipeline systems

Nomenclature
G = (J ,P) Gas network with a set of junctions Ji ∈J and a set of pipes Pi j ∈P

C ⊆P Subset of pipes with compressors

pi j Pressure variable (Pa) for Pi j
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qi j Mass flux variable (kg/s) for Pi j

pN ,qN Pressure and flux dimensionless scaling constants

Ri j,ci j Compressor ratio and compressor location of Pi j

di Mass flux (kg/s) injections/consumptions at Ji

si Boundary pressure (Pa) at Ji

Si j Cost of the compressor at Pi j ∈ C

Di j,Ai j,Li j Pipe diameter (m), cross-section area (m2), and length (m) of pipe Pi j

T Total time horizon (sec)

γ,η Isentropic coefficient of gas and compressor efficiency factor

a,λ Sound speed (ms−1) and gas friction factor

pi j, pi j Maximum/Minimum pressure limit (Pa)

Ri j,Ri j Maximum/Minimum compression limit

xi j, t Space segment of Pi j in [0..Li j] and time point in [0..T ]

1. Introduction
In recent decades, the increasing penetration of renewable energy sources into electric power grids

and the growth in availability of natural gas has driven installation of gas-fired electric power plants

to meet most of the demand for new generating capacity and reserves [1, 2, 3]. Gas-fired generators

often go online and shut down several times a day, and can rapidly adjust their production, which

makes them attractive resources to use for balancing the fluctuation of renewable energy sources

such as wind and solar [4, 5, 6].

Historically, withdrawals from natural gas transmission systems came from utilities and indus-

trial consumers whose usage is predictable and exhibits low variation in demand [6]. These with-

drawals are traded using day-ahead contracts for fixed deliveries and implicitly assume that injec-

tions and withdrawals remain nearly constant [7]. As a result, optimization approaches for natural

gas transmission systems have traditionally restricted attention to steady-state models [8, 9].

For example, early studies [10, 11] focused on optimizing steady-state gas flows, for which

the state equations are algebraic relations. Recent efforts have scaled and improved optimization

techniques for similar problems [12, 13, 14, 15, 16]. In short-term operations, the operating set-

points for gas compressor stations can be readily changed, and compressor optimization for steady-

state flows has been solved in the form of an optimal gas flow (OGF) [14].

However, the growing use of gas-fired power plants for electricity generation [3, 17] has

prompted concerns in both industry sectors [5]. The integration of electric and gas systems may
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result in gas-fired generator dispatch and commitment schedules that create substantial intra-day

fluctuations in high-volume gas flows. The physics underlying these fuctuations cannot be ade-

quately captured by steady-state models [18, 19], raising challenges highlighted in recent studies

[20]. To enable natural gas systems to inter-operate with electric power systems on the time-scale

of generator dispatch, the OGF must take into account transient flow conditions and new optimiza-

tion models are required to capture the gas dynamics in pipeline networks [21]. In particular, an

automatic control methodology for optimally managing transient intra-day flows in gas transmis-

sion systems necessitates stable, accurate, physics-based, and efficient optimization algorithms for

computing model-based compressor control protocols.

Gas pipeline flow dynamics over appropriate spatial and temporal scales do not experience

waves or shocks, and can be represented by Euler equations for compressible gas flow in one-

dimension with significant simplifications [22, 23]. These partial differential equations (PDEs)

are highly nonlinear however, and are challenging to simulate, particularly for networks coupling

hundreds of equations over different domains [24]. The vast majority of previous studies on gas

pipeline transients have focused on physical modeling and simulation of initial value problems

(IVPs) [25, 26, 27]. An excellent review of early literature was written by Thorley et al. [28]. How-

ever, the traditional approaches to finding solutions to PDEs require fine space-time discretizations

that are not tractable for representing dynamic constraints in optimization problems.

The nonlinearity and complexity of gas pipeline network dynamics is also an obstacle to the

tractable optimization of these flows under transient conditions. Several studies have proposed

optimization schemes for gas networks on the time-scale of daily operations and the issues of com-

putation time and scalability have been noted repeatedly. These optimization methods are focused

on producing time-dependent schedules of compressor discharge pressures that satisfy pipeline

constraints and meet time-varying loads. These computations are typically very expensive and

often too slow for real-time decision-making. This motivates the need for new optimization tools.

Existing approaches for optimization of gas pipelines with dynamics typically fall into one of

two categories. Simulation-based methods optimize controllable parameters and rely on repeated

executions of high-fidelity simulations to verify that inequality constraints such as pressure limits

are satisfied [29, 30]. By solving initial value problems (IVPs) based on highly detailed physical

and engineering models to evaluate the dynamic constraints, such methods provide strong guar-

antees that all constraints are satisfied for feasible solutions. These methods are augmented with

adjoint-based gradients [31]. While adjoint methods exploit sparsity and parallelization, higher
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order derivatives and Jacobians of the active constraints, both of which accelerate convergence and

aid robustness, are computationally costly.

Alternatively, discretize-then-optimize approaches are focused on rapid evaluation of constraint

Jacobians for the entire optimization period [32]. These approaches start with optimal control for-

mulations that incorporate a cost objective, equality and inequality constraints on state variables,

and differential-algebraic approximations of PDE dynamic constraints directly within the opti-

mization problem (instead of relying on simulations). The entire problem is discretized in time

using approximations of the functions evaluated at time- and space- collocation points, using local

difference schemes [33] or spectral approximation [34]. The resulting model is a nonlinear program

(NLP) with purely algebraic objective and constraint functions. Although this type of formula-

tion may be large-scale, it can be solved by taking advantage of special structure or by recently

developed general optimization tools for problems with sparse constraints [35].

Recently developed approaches to reduced order representation of PDE dynamics on graphs

[36], and their extension to control system modeling [34, 35], have enabled tractable representa-

tions of gas pipeline system dynamics. Such models are used to express constraints in dynamic

optimization problems as well as to perform simulations of IVPs. In the former case, the con-

straints over the entire optimization time interval are represented using a coarse discretization. In

the latter case, fine-grained time stepping is used to compute the solution forward over the simu-

lation time interval. Here, we show that using a “discretize-then-optimize” approach on a coarser

grid than those used in simulation-based approaches results in solutions with low error rates and

significantly improved computation times.

This paper examines the Dynamic Optimal Gas Flow (DOGF) problem, which generalizes the

OGF to capture the dynamics of a gas pipeline network subject to time-dependent intra-day con-

sumptions. The objective of the DOGF is to minimize the cost of gas compression subject to system

pressure constraints and time-dependent flow withdrawals. Our main contribution is a computa-

tionally efficient optimization scheme for the DOGF, that is validated with an accurate simulation

method for gas pipeline networks with dynamic flows and compressor operations. The DOGF is

formulated for optimizing intra-day flow schedules, and therefore, does not consider valves as

controllable variables. Major topological changes for re-routing flows by changing valve positions

are typically made on a weekly or monthly basis. By fixing the system topology, we formulate

the DOGF as a continuous-time, continuous-state optimal control problem that is discretized as a
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nonlinear program with continuous variables only. Generalizing the problem to include valves sig-

nificantly increases model complexity by adding a large number of binary variables. This addition

is outside of the scope of the present work but is an important topic for further research in energy

systems in general.

The key aspects of our optimization scheme are summarized as follows. The hydrodynamic

relations that describe gas flows are discretized in time and space using first-order approximations

[34]. Several relaxations of the nonlinear constraints are proposed: The spatial discretization is

performed by either the trapezoidal rule or a lumped element approximation, while the temporal

discretization employs either a trapezoidal rule or a pseudospectral approximation. While trape-

zoidal, lumped element, and similar space-discretization schemes have been used in simulation

studies [28, 36], pseudospectral schemes are often used for time discretization in computational

optimal control [37]. For various combinations of discretizations in time and space, we investigate

the trade-offs between computational efficiency of the optimization and feasibility of the physical

model, as verified by a fine-grained simulation. While a significant theory exists on convergence

of computational optimal control methods based on pseudospectral approximation [38, 39], such

schemes are dense and global on the time interval of interest. Simpler, local differentiation rules

support sparse computations that yield faster, more accurate solutions. We find that, for the DOGF

problem, the combination of lumped elements in space and trapezoidal rule in time yields the most

advantageous discretization in this respect.

In general, time and space discretizations for PDEs cannot be chosen independently. In this

study, we focus on practical algorithmic aspects of dynamic optimization of pipeline transients,

rather than the theoretical justifications of particular discretization schemes for parabolic PDE sys-

tems. We support the resulting optimization approach by empirically comparing the solution of the

dynamic constraints (pressures and flows) to solutions using a validated high-fidelity simulation

of the same constraints. The time and space discretization procedures are applied sequentially in

the schemes proposed here. This approach is inspired by the simulation methodology for solving

initial value problems [34, 36], in which the uniform lumped element space discretization yields

a differential algebraic equation (DAE) system on a fixed space grid. Starting from initial condi-

tions, the equations are integrated forward in time using adaptive stepping, thus falling into the

class of method of lines (MOL) approaches [40]. Therefore, we apply time-discretization to the

dynamic constraints after they have been discretized in space, and examine the quality of solutions

empirically based on several case studies.
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Moreover, to compensate for potential inaccuracies and model operational constraints on com-

pressors, the paper proposes a two-stage optimization approach. In the first stage, the scheme opti-

mizes the compression cost (the original objective). In order to obtain a solution that appropriately

represents smooth fluid flow physics and operational considerations, the second stage minimizes

the time derivative of the compressor boost ratios while ensuring that the overall compression costs

remain close to the value found in the first stage. The resulting large-scale, nonlinear optimization

problems (with up to 130,000 decision variables) are solved using the IPOPT 3.12.2, ASL routine

(version 2015) nonlinear optimization system [41].

The solutions produced by our optimization scheme are compared to a validated dynamic simu-

lation method for gas pipeline networks with transient compression [42, 43], which is parametrized

by the compressor ratios from our optimized solutions. The validation process indicates that our

optimization scheme produces solutions with no pressure constraint violations and with physically

meaningful mass flow and pressure trajectories that match well the corresponding simulations.

Moreover, the compressor ratios from our four discretization variants exhibit negligible differ-

ences and eventually converge to the same solution. The main benefit of our optimization scheme,

however, is its computational efficiency. It provides a highly accurate solution to a previously

investigated 24-pipe gas network case study in less than 30 seconds, and demonstrates scalability

to pipeline networks with 25, 40, and 135 nodes, 24, 45, and 170 pipes, and with total pipeline

lengths of 477, 1118, and 6964 kilometers respectively.

Preliminary results of our work were published in the proceedings of the 2016 American Control

Conference [35], where the trapezoidal rule was used for discretization in both time and space.

This paper extends our previous work by presenting and comparing four discretization schemes in

detail, as well as by developing initial formulations for maximizing system throughput or operator

revenue in the presence of highly variable loads.

The rest of the paper is organized as follows. Section 2 contains a summary of physical modeling

of gas pipeline networks, and formulates the DOGF. Section 3 describes the discretization schemes

that we examine. Section 4 motivates and presents our two-stage optimization approach to enforce

smooth, physically accurate solutions. Section 5 describes computational and validation results

for three case studies on systems of increasing scale and complexity. Section 6 concludes with a

discussion and summary of possible future directions.
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2. Compressor Optimization in Gas Pipelines
A gas pipeline network can be represented as a directed graph G = (J ,P), where edges {i, j} ∈

P represent pipes Pi j connecting nodes i, j ∈J representing junctions Ji and J j. The length of

pipe Pi j is denoted by Li j, its diameter by Di j, and its cross-sectional area by Ai j. The dynamic

state on the pipe Pi j at a location xi j ∈ [0,Li j] and time t ∈ [0,T ] is given by pressure pi j(t,x) and

mass flow qi j(t,x) functions.

We are interested in the subsonic and isothermal regime where transients are sufficiently slow so

as not to excite shocks or waves, i.e., where the flow velocity through a pipe is less than the speed

of sound a in the gas, and temperature is assumed to be constant. Major changes in gas temperature

generally occur because of gas compression. Since nearly all gas pipelines are buried under ground

(with a few exceptions, e.g., river crossings), the gas temperature returns to ground temperature

one or two kilometers downstream of compression [44]. Because the variation in absolute ground

temperature outside the neighborhood of compressor stations is on the order of a few percent, and

because modern compressor stations are equipped with gas coolers, we assume that there are no

large temperature differences in the network.

The flow dynamics on a single pipe Pi j can be adequately described in this regime [23] by:

∂ pi j

∂ t
+

a2

Ai j

∂qi j

∂x
= 0 (1)

1
Ai j

pi j
∂qi j

∂ t
+ pi j

∂ pi j

∂x
=− λa2

2Di jA2
i j

qi j|qi j|, (2)

and further reduced [23], by approximating ∂qi j
∂ t ≈ 0, to

∂ pi j

∂ t
+

a2

Ai j

∂qi j

∂x
= 0 (3)

2pi j
∂ pi j

∂x
+

λa2

Di jA2
i j

qi j|qi j|= 0 (4)

We used the modeling assumptions outlined in [22], which is validated and widely used in

other studies on modeling of gas pipeline networks for optimization with dynamics [6, 23, 35].

In addition to omitting higher-order inertial terms and gravity effects from the flow equations, we

assume that gas composition and temperature are uniform throughout the network, and a nominal

value for gas compressibility is chosen. This results in a constant, system-wide value for the speed

of sound in the gas. Thus, the speed of sound a is assumed to be uniform and constant throughout

the system. Our focus here is on the development and validation of an optimization methodology
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for dynamics, rather than on detailed physical modeling. We are focused on capturing the key

physical phenomena of large-scale gas pipeline flows. The second term in (4) approximates friction

effects, which constitute the major phenomenon that dissipates momentum of the gas flow [22].

We leave for future work the generalizations of our results to cases where temperature and gas

composition are inhomogeneous and an equation of state determines gas compressibility.

The gas dynamics on a pipeline segment are represented using (3)-(4) and possess a unique

solution when any two of the boundary conditions pi j(t,0), qi j(t,0), pi j(t,Li j), or qi j(t,Li j) are

specified. For both computational and notational purposes, we apply a transformation to dimen-

sionless variables [23] given by

p̃i j =
pi j

pN
, q̃i j =

qi j

qN
, x̃i j = x

λa2q2
N

Di jA2
i j p

2
N
, t̃i j = t

λa4q3
N

Di jA3
i j p

3
N
, (5)

where pN and qN are scaling constants. This results in the dimensionless equations

∂ p̃i j

∂ t̃i j
+

∂ q̃i j

∂ x̃i j
= 0, (6)

2p̃i j
∂ p̃i j

∂ x̃i j
+ q̃i j|q̃i j|= 0, (7)

Note that the space and time variables xi j and ti j are now pipe-dependent. Design limits and regu-

lations for pipeline systems require pressure to remain within specified bounds given by

p̃i j ≤ p̃i j(t̃i j, x̃i j)≤ p̃i j. (8)

The momentum dissipation due to the friction term in (4) causes the gas pressure to decrease,

hence it must be augmented by compressors to maintain the minimum required pressure. We define

C ⊆P as the subset of pipes that have compressors. The action of compressors is modeled as a

conservation of flow and an increase in pressure at a point ci j ∈ [0,Li j] by a multiplicative ratio

Ri j(t̃i j)≥ 1 that may depend on time.

Specifically,

lim
x̃i j↘ci j

p̃i j(t̃i j, x̃i j) = Ri j(t̃i j) lim
x̃i j↗ci j

p̃i j(t̃i j, x̃i j), (9)

lim
x̃i j↘ci j

q̃i j(t̃i j, x̃i j) = lim
x̃i j↗ci j

q̃i j(t̃i j, x̃i j). (10)

The cost of compression Si j is proportional to the required power [45], and is approximated by

Si j(t̃i j) = η
−1|q̃i j(t̃i j,ci j)|(max{Ri j(t̃i j),1}2K−1) (11)
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with 0 < K = (γ − 1)/γ < 1, where γ is the heat capacity ratio and η is a compressor efficiency

factor. In this study we do not consider pressure regulation (decompression), so the compressor

ratio for a given station must remain bounded within a feasible operating region

max{Ri j,1} ≤ Ri j ≤ Ri j. (12)

A compression ratio with a value greater than 1, i.e., Ri j(t̃i j) ≥ 1, corresponds to a compressor

applying power in its defined working direction. A value of Ri j(t̃i j) = 1 denotes a compressor

that is bypassed by the flow, in either the working or the reverse direction. For modeling flows

in large-scale systems, we use theoretical compressors that represent entire compressor stations

as single objects. For transmission pipelines, flow to all machinery in the station is accepted and

discharged through common headers. The detailed control mechanisms of individual compressors

are abstracted, and individual compressors are coordinated by the control system of the station to

maintain operating setpoints corresponding to the common headers. This abstract representation

of actuators that boost pressure can also be used to model pressure regulators that decrease the

pressure where needed. However, large-scale transmission pipelines typically include few such

elements, because regulation is often performed to lower pressure at city gates or large customers

after custody is transferred from the pipeline.

This study does not model regulators and makes certain assumptions on the structure of the

system and the pressure bounds. We assume that the pipeline system was built in order to admit

feasible solutions in its usual operations. Specifically, since pressure cannot be actively decreased

in our model (in accordance with the typical construction of transmission pipelines), we assume

that the maximum pressure bound throughout the network is uniform. While this may appear to be a

strong assumption, it is reasonable in practice as: 1) the intra-day operation of high-pressure, large-

scale transmission systems is separated from operation of lower pressure distribution systems, and

2) transmission systems rarely experience changes in large-scale flow directions. This assumption

guarantees that Ri j must be assigned to 1 (set to bypass mode) in the optimal solution if gas is

delivered in the reverse direction (from j to i) on a pipe Pi j with compressor Ci j. Indeed, assume that

Ri j is larger than 1 (i.e., set to regulator mode in the reverse flow direction) in an optimal solution.

Because the maximum pressure bound is uniform across the network, it is possible to remove the

decompression and obtain a feasible solution with a lower cost based on our objective function,

contradicting the optimality assumption. This means that Ri j = 1 when the flow is reversed on pipe

Pi j. The investigation of appropriate models and optimal control problems for systems with more
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complex structure, such as multi-pressure systems that require intra-day control of regulators, is a

topic for future research.

In addition to the dynamic equations (6)-(7) and continuity conditions for compressors (9)-(10)

that characterize the system behavior on each pipe Pi j ∈P , we specify balance conditions for each

junction Ji ∈J . We first define variables for the unique nodal pressure pi(t) at each junction, as

well as mass injections fi(t) from outside the system (negative for withdrawals/consumption).

Each junction J j ∈J then has a flow balance condition

∑
Jk∈J :Pjk∈P

q̃ jk(t̃i j,0)− ∑
Ji∈J :Pi j∈P

q̃i j(t̃i j,Li j) = f j(t), (13)

as well as a pressure continuity condition

p̃i j(t̃i j,L) = p j(t) = p jk(t̃i j,0), (14)

∀Ji,Jk ∈J s.t. Pi j,Pjk ∈P

where t̃i j is the pipe-dependent dimensionless time transformed from the time t in nominal unit.

A subset of the junctions S ⊂J may be treated as “slack” nodes, which reasonably represent

large sources in a transmission system, such as significant storages or interconnections. For these

junctions, the mass inflow fi(t) is a free variable and the nodal pressure is defined at a supply

pressure boundary parameter si(t) (in dimensionless unit). For the remaining junctions, which

reasonably represent consumers or small suppliers, the nodal pressure pi(t) is free and the mass

inflow is initialized with an injection/withdrawal boundary parameter di(t) (in dimensionless unit).

These boundary conditions are given by

pi(t) = si(t), fi(t) = di(t). (15)

Here, we express injections into and withdrawals from the pipeline network in terms of mass

flow. While the contracts and daily nominations for natural gas are given in units of energy, e.g.,

kWh or mmBtu, the assumption of uniform system-wide composition allows the use of mass flow

units. In practice, the mass flow nominated depends on the calorific value, which is normally

assumed to be known at the sources. Our focus is on large-scale transmission pipelines that receive

gas from processing plants, which supply gas with composition with less than 2% variability. Pre-

liminary validation on real data of transmission pipeline modeling using density and mass flow

variables only has recently shown the approach to be acceptable in an industrial setting [46].
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The optimization problem that we solve involves a gas pipeline network for which the conditions

at each junction are parameterized by an injection/withdrawal di(t) or supply pressure si(t). The

design goal is for the system to deliver all of the required flows di(t) while maintaining feasible

system pressure given the physics-based dynamic constraints, and minimizing the cost of com-

pression over a time interval [0,T ]. Let T̃i j = T λa4q3
N

Di jA3
i j p3

N
to be the dimensionless time horizon of Pi j.

This cost objective is given by

C = ∑
Pi j∈C

∫ T̃i j

0
Si j(t̃i j)dt̃i j (16)

In this study, we consider time-periodic boundary conditions on the system state and controls, i.e.,

p̃i j(0, x̃i j) = p̃i j(T̃i j, x̃i j), q̃i j(0, x̃i j) = q̃i j(T̃i j, x̃i j), ∀Pi j ∈P (17)

Ri j(0) = Ri j(T̃i j), ∀Pi j ∈ C (18)

and therefore feasible parameter functions also must satisfy di(0) = di(T ) and si(0) = si(T ). The

complete formulation is

min C in (16)

s.t. pipe dynamics: (6), (7)

compressor continuity: (9), (10)

junction conditions: (13), (14)

density & compression constraints: (8), (12)

periodicity constraints: (17), (18)

boundary parameters: (15)

compressor power: (11)

(19)

In the next section, we describe a spatial and temporal discretization scheme and relaxation condi-

tions that facilitate efficient solution of this PDE-constrained optimization problem using standard

nonlinear programming tools.

3. Discretization to a Nonlinear Program
We evaluate several discretization schemes to balance the high nonlinearity in the spatiotemporal

dynamics (6)-(7) among a collection of auxiliary variables in which the constraints in Problem

(19) possess a sparse representation. In all of our schemes, we will have the following common

notions. For each pipe Pi j, we have: 1) a set of M + 1 time points t̃ i j
m , and 2) a set of Ni j + 1
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space points x̃i j
n . Normalization and rescaling is performed after choosing the collocation points

identically throughout the network in order to maintain consistency of the time discretization.

We use a uniform grid for the trapezoidal scheme for simplicity. For pseudospectral methods, the

collocation points are chosen according to the polynomial approximation scheme.

3.1. Trapezoidal Quadrature Rule Approximation

For trapezoidal discretization, we discretize t̃ i j
m and x̃i j

n uniformly:

t̃ i j
m = m∆

t
i j, m = 0,1, . . . ,M, (20)

x̃i j
n = n∆

x
i j, m = 0,1, . . . ,Ni j, (21)

∆
t
i j =

T̃i j

M
, ∆

x
i j =

L̃i j

Ni j
. (22)

∆t
i j and ∆x

i j are (dimensionless) time and space discretization steps, and T̃i j is the dimensionless

time horizon for pipe Pi j obtained from T according to (5). We omit the subscripts {i j} on Ni j when

they are clear from the context. For each of the (M+1)×(Ni j+1) discrete points in the time-space

grid {(t̃ i j
m , x̃

i j
n ) : 0 ≤ m ≤ M,0 ≤ n ≤ Ni j} within the (dimensionless) domain [0, T̃i j]× [0, L̃i j] for

the flow dynamics on a pipe Pi j, we define

p̃mn
i j

∆
= p̃i j(t̃ i j

m , x̃
i j
n ), q̃mn

i j
∆
= q̃i j(t̃ i j

m , x̃
i j
n ) (23)

to be the pressure and mass flow variables at time t̃ i j
m and location x̃i j

n . In this discretization, we

define temporal and spatial derivative variables at time t̃ i j
m and location x̃i j

n by

p̃tmn
i j

∆
=

∂ p̃i j

∂ t̃i j
(t̃ i j

m , x̃
i j
n ), p̃xmn

i j
∆
=

∂ p̃i j

∂ x̃i j
(t̃ i j

m , x̃
i j
n ), (24)

q̃xmn
i j

∆
=

∂ q̃i j

∂ x̃i j
(t̃ i j

m , x̃
i j
n ). (25)

A constraint that relates the discretized variables (23) to their derivatives (24)-(25) is created by

approximating the integral over a time or space step by the trapezoid rule. This yields

∀Pi j ∈P−C ,0≤ m≤M−1,0≤ n≤ N : p̃m+1,n
i j − p̃mn

i j ≈
∆t

i j

2
(p̃tm+1,n

i j + p̃tmn
i j ) (26)

∀Pi j ∈P−C ,0≤ m≤M,0≤ n≤ N−1 :

p̃m,n+1
i j − p̃mn

i j ≈
∆x

i j

2
(p̃xm,n+1

i j + p̃xmn
i j ), q̃m,n+1

i j − q̃mn
i j ≈

∆x
i j

2
(q̃xm,n+1

i j + q̃xmn
i j ) (27)
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3.2. Non-dimensional Dynamic Equation with Compressors

The non-dimensional dynamic equations (6)-(7) are then discretized in the above variables by

∀Pi j ∈P−C ,0≤ m≤M,0≤ n≤ N : p̃tmn
i j + q̃xmn

i j = 0, 2p̃mn
i j p̃xmn

i j + q̃mn
i j |q̃mn

i j |= 0 (28)

For each pipe with compressors Pi j ∈ C , we define the discrete compression variables Rm
i j for

m = 0,1, . . . ,M, and assume that the compressor is located at ci j = xk for some 0≤ k ≤ N, where

the dependence of k on the pipe Pi j in question is clear from the context. The pipe is then divided

into two pipes Pi ju and Pi jl , with non-dimensional lengths Li ju and Li jl , and for which we define

the discretized variables

p̃mn
i ju

∆
= p̃i j(t̃ i j

m , x̃
i j
n ), q̃mn

i ju
∆
= q̃i j(t̃ i j

m , x̃
i j
n ), 0≤ n≤ k (29)

p̃mn
i jl

∆
= p̃i j(t̃ i j

m , x̃
i j
n ), q̃mn

i jl
∆
= q̃i j(t̃ i j

m , x̃
i j
n ), k ≤ n≤ N (30)

and corresponding spatial derivative variables p̃tmn
i ju, p̃xmn

i ju, and q̃xmn
i ju for 0≤ n≤ k and p̃tmn

i jl , p̃xmn
i jl ,

and q̃xmn
i jl for k ≤ n≤ N. These state and derivative variables satisfy

p̃m+1,n
i ju − p̃mn

i ju ≈
∆t

i j

2
(p̃tm+1,n

i ju + p̃tmn
i ju), 0≤ n≤ k, (31)

p̃m+1,n
i jl − p̃mn

i jl ≈
∆t

i j

2
(p̃tm+1,n

i jl + p̃tmn
i jl ), k ≤ n≤ N (32)

for Pi j ∈ C and 0≤ m≤M−1, and

p̃m,n+1
i ju − p̃mn

i ju ≈
∆x

i j

2
(p̃xm,n+1

i ju + p̃xmn
i ju), 0≤ n < k, (33)

p̃m,n+1
i jl − p̃mn

i jl ≈
∆x

i j

2
(p̃xm,n+1

i jl + p̃xmn
i jl ), k ≤ n≤ N, (34)

q̃m,n+1
i ju − q̃mn

i ju ≈
∆x

i j

2
(q̃xm,n+1

i ju + q̃xmn
i ju), 0≤ n < k, (35)

q̃m,n+1
i jl − q̃mn

i jl ≈
∆x

i j

2
(q̃xm,n+1

i jl + q̃xmn
i jl ), k ≤ n≤ N (36)

for Pi j ∈C and 0≤m≤M. In addition, we require continuity constraints at the compressor location

to connect pipes Pi ju and Pi jl for all Pi j ∈ C and 0≤ m≤M, which take the form

Rm
i j =

p̃mk
i jl

p̃mk
i ju

, q̃mk
i jl = q̃mk

i ju. (37)



Mak et al.: Dynamic Compressor Optimization in Natural Gas Pipeline Systems
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

The equations (6)-(7) on either side of the compressor are discretized for Pi j ∈ C by

p̃tmn
i ju + q̃xmn

i ju = 0, 0≤ n≤ k, (38)

2 p̃mn
i ju p̃xmn

i ju + q̃mn
i ju|q̃mn

i ju|= 0, 0≤ n≤ k, (39)

p̃tmn
i jl + q̃xmn

i jl = 0, k ≤ n≤ N (40)

2p̃mn
i jl p̃xmn

i jl + q̃mn
i jl |q̃

mn
i jl |= 0, k ≤ n≤ N (41)

for all Pi j ∈ C and 0 ≤ m ≤ M. The equations (26)-(28) and (31)-(41) discretize the dynamic

equations (6)-(7) and continuity conditions for compressors (9)-(10).

3.3. Pseudospectral Approximation

Another approach to time discretization is a pseudospectral approximation, which is a global

approximation scheme that is endowed with the desirable properties of spectral accuracy [38].

Here, we use the Legendre-Gauss-Lobatto (LGL) pseudospectral collocation scheme for time

discretization [47, 48, 49]. Suppose we want to discretize a function into M + 1 time points

(τ0, . . . ,τM). The scheme employs a Legendre polynomial of order M (LM(τ)) as the interpolant,

and the appropriate time collocation points for the discretization are given as the zeros of the

derivative of LM (i.e., the zeros of ∂LM(τ)
∂τ

). These points lie within the interval [−1,1], and rescaling

(via affine transformation) is required to rescale the time points t̃ i j
m ∈ [0, T̃i j] to dimensionless ones

of the form τm ∈ [−1,1]. This yields

τm =
2t̃ i j

m − T̃i j

T̃i j
, (42)

and also induces a re-scaled function f T on τm ∈ [−1,1], of form

f T (τm) = f (t̃ i j
m) where t̃ i j

m =
T̃i j(τm +1)

2
. (43)

The scheme is based on the Mth degree interpolating polynomial f M(τ), constructed as follows:

f M(τ) =
M

∑
m=0

f T (τm)φm(τ), where φm(τ) =
1

M(M+1)LM(τm)

(τ2−1)∂LM(τ)
∂τ

τ− τm
. (44)

Because φm is constructed such that φm(τ j) will be 1 if m = j and 0 otherwise, f M will be equal

to f T on all discretized re-scaled points (τ0, . . . ,τM). By restricting our attention to f M and only at

the discretized points, we have the following approximation for differentiation:

∂ f (t̃ i j
m)

∂ t̃i j
=

∂ f T (τm)

∂τ

∂τ

∂ t̃i j
≈ 2

T̃i j

∂ f M(τm)

∂τ
=

M

∑
j=0

Dm j f T (τ j) =
M

∑
j=0

Dm j f (t̃ i j
j ), ∀0≤ m≤M (45)
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where Dm j is the time differentiation coefficient on the jth Legendre polynomial at time τ j:

Dm j =
2

T̃i j



LM(τm)
LM(τ j)

1
τm−τ j

, m 6= j

−M(M+1)
4 , m = j = 0

M(M+1)
4 , m = j = M

0, otherwise

(46)

We also obtain an expression for integration in t̃i j from ta to tb given by∫ tb

ta
f (t̃i j)dt̃i j =

∫
τb

τa

f T (τ)
∂ t̃i j

∂τ
dτ ≈

T̃i j

2

∫
τb

τa

f M(τ)dτ

=
T̃i j(τb− τa)

2

M

∑
j=0

[ f T (τ j)w j] = (tb− ta)
M

∑
j=0

[ f (t̃ i j
j )w j] (47)

where w j is the weighting coefficient with respect to the Lagrange polynomial φ j:

w j =
1

M(M+1)
1

(LM(τ j))2 (48)

To change from trapezoidal time discretization to LGL pseudospectral discretization, we replace

(26), (31), and (32) by

p̃tmn
i j ≈

M

∑
g=0

Dmg p̃gn
i j (49)

for all Pi j ∈P−C , 0≤ m≤M, and 0≤ n≤ N, and

p̃tmn
i ju ≈

M

∑
g=0

Dmg p̃gn
i ju, 0≤ n≤ k, (50)

p̃tmn
i jl ≈

M

∑
g=0

Dmg p̃gn
i jl, k ≤ n≤ N (51)

for Pi j ∈ C and 0≤ m≤M, where T̃i j is the pipe-dependent dimensionless time horizon, and k is

the compressor location of pipe Pi j.

3.4. Lumped Element Approximation

So far, we have approximated equations (6)-(7) by spatial discretization for both the pressure and

flux variables and only a time discretization for the pressure variables. One way to further decrease

the computational complexity is to simplify the space discretization by using a lumped element

approximation, where spatial derivative variables are no longer required. Instead of approximating
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spatial derivatives by (27) and (33)-(36), a lumped-element approximation is applied to the non-

dimensional dynamic equations (6)-(7) by integrating along each pipe segment in space, either

explicitly or by the trapezoid quadrature rule. This yields the relations:∫ x̃i j
n+1

x̃i j
n

∂ p̃i j

∂ t̃i j
dx̃i j ≈

∆x
i j

2
(p̃tmn

i j + p̃tm,n+1
i j ), (52)

∫ x̃i j
n+1

x̃i j
n

∂ q̃i j

∂ x̃i j
dx̃i j = q̃m,n+1

i j − q̃mn
i j , (53)

∫ x̃i j
n+1

x̃i j
n

2p̃i j
∂ p̃i j

∂ x̃i j
dx̃i j =

∫ x̃i j
n+1

x̃i j
n

∂ (p̃i j)
2

∂ x̃i j
dx̃i j = (p̃m,n+1

i j )2− (p̃mn
i j )

2, (54)

∫ x̃i j
n+1

x̃i j
n

q̃i j|q̃i j|dx̃i j ≈
∆x

i j

2
(q̃mn

i j |q̃mn
i j |+ q̃m,n+1

i j |q̃m,n+1
i j |) (55)

Substituting back into (6)-(7) yields

∆x
i j

2
(p̃tmn

i j + p̃tm,n+1
i j )+ q̃m,n+1

i j − q̃mn
i j = 0, (56)

(p̃m,n+1
i j )2− (p̃mn

i j )
2 +

∆x
i j

2
(q̃mn

i j |q̃mn
i j |+ q̃m,n+1

i j |q̃m,n+1
i j |) = 0, (57)

for all Pi j ∈P−C , 0≤ m≤M, and 0≤ n≤ N−1. By similar reasoning on pipes with compres-

sors, we obtain (58)-(61) replacing (33)-(36):

∆x
i j

2
(p̃tmn

i ju + p̃tm,n+1
i ju )+ q̃m,n+1

i ju − q̃mn
i ju = 0, 0≤ n≤ k−1, (58)

(p̃m,n+1
i ju )2− (p̃mn

i ju)
2 +

∆x
i j

2
(q̃mn

i ju|q̃mn
i ju|+ q̃m,n+1

i ju |q̃m,n+1
i ju |) = 0, 0≤ n≤ k−1, (59)

∆x
i j

2
(p̃tmn

i jl + p̃tm,n+1
i jl )+ q̃m,n+1

i jl − q̃mn
i jl = 0, k ≤ n≤ N−1, (60)

(p̃m,n+1
i jl )2− (p̃mn

i jl )
2 +

∆x
i j

2
(q̃mn

i jl |q̃
mn
i jl |+ q̃m,n+1

i jl |q̃m,n+1
i jl |) = 0, k ≤ n≤ N−1 (61)

for all Pi j ∈ C and 0≤m≤M. Overall, lumped element approximation can be seen as a simplified

trapezoidal rule discretization in space, where (27) and (33)-(36) are omitted and (28), (38)-(41)

are replaced with (56)-(57) and (58)-(61).

3.5. Constraints and Objective

We now show how to express the problem constraints and objective. The pressure variables must

lie within the operational/safety bounds, as given in (8). In discretized form, we have for all 0 ≤
m≤M that

p̃i j ≤ p̃nm
i j ≤ p̃i j, Pi j ∈ P−C, 0≤ n≤ N, (62)
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p̃i j ≤ p̃nm
i ju ≤ p̃i j, Pi j ∈C, 0≤ n≤ k, (63)

p̃i j ≤ p̃nm
i jl ≤ p̃i j, Pi j ∈C, k ≤ n≤ N (64)

In addition, the compression ratio must lie within operational requirements and satisfy

max{Ri j,1} ≤ Rm
i j ≤ Ri j. (65)

for all Pi j ∈ C and 0≤ m≤M. The cost of compression is then expressed by a constraint

Sm
i j = η

−1 ˜qmm
i j((R

m
i j)

2K−1) (66)

for all Pi j ∈ C and 0≤ m≤M, where ˜qmm
i j is an auxiliary variable with the constraints

˜qmm
i j ≥ q̃mk

i ju, ˜qmm
i j ≥−q̃mk

i ju, (67)

so that minimizing ˜qmm
i j will minimize |q̃mk

i ju| (when Rm
i j > 1). Compressor cost is also constrained

to be positive, i.e.,

Sm
i j ≥ 0. (68)

The balance conditions at junctions are enforced as follows. For all 0≤ m≤M and J j ∈J ,

∑
Jk∈J :Pjk∈P

q̃m0
jk − ∑

Ji∈J :Pi j∈P
q̃mN

i j + ∑
Jk∈J :Pjk∈P

q̃m0
jku− ∑

Ji∈J :Pi j∈P
q̃mN

i jl = f m
j , and (69)

For all Ji,Jk ∈J s.t. Pi j,Pjk ∈P ,

p̃mN
i j =p̃m

j = p̃m0
jk . (70)

Parametrization of these balance conditions for 0≤ m≤M is given by

f m
i = d̃i(tm), Ji ∈J −S , (71)

pm
i = s̃i(tm), Ji ∈S , (72)

where d̃i(t) and s̃i(t) are given flow injection or supply pressure functions (in dimensionless form).

The time-periodic boundary conditions on the states and controls are given for 0≤ m≤M by

−ε ≤ p̃0n
i j − p̃Mn

i j ≤ ε, ∀Pi j ∈P−C , 0≤ n≤ N (73)

−ε ≤ p̃0n
i ju− p̃Mn

i ju ≤ ε, ∀Pi j ∈ C , 0≤ n≤ k (74)

−ε ≤ p̃0n
i jl− p̃Mn

i jl ≤ ε, ∀Pi j ∈ C , k ≤ n≤ N (75)

−ε ≤ R0
i j−RM

i j ≤ ε, ∀Pi j ∈ C . (76)
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Figure 1 A non-smooth solution with trapezoidal time and space discretization. Left to right: Compression

ratios; Pressure trajectories (optimization); Pressure trajectories (simulation)

where ε is a sufficiently small tolerance. The integral in the objective of problem (19) is approxi-

mated by a Riemann sum (normalized by Um) of the form

C1 ≈ ∑
Pi j∈C

M

∑
m=0

UmSm
i j. (77)

where Um denotes weights for the compression energy at time point m. We set Um to 2/(M + 1)

for trapezoidal time discretization and to 2×wm for pseudospectral time discretization to allow

comparisons on the objective values for both discretization on the same scale (i.e. the dimensionless

time interval re-scaled to [−1,1]).

4. The Two-Stage Optimization Model
A direct encoding of the optimization problem over the discretized constraints and objectives may

result in solutions where the pressure, flow, and compression ratio solutions may not be smooth.

Figure 1 exhibits such a behavior on one of our test cases. The left and middle subfigures depict the

compressor ratios and the pressures obtained by such a direct encoding. The right figure shows the

results of a dynamic adaptive simulation using the optimal compressor ratios. The rapidly changing

compression ratios in the optimal solution are undesirable from an operational standpoint: The

application of such non-smooth controls would result in fast changes in pressure and flux (as seen

in the right subfigure in Figure 1) which may cause severe damage to turbomachinery or piping.

Moreover, the jitters in the pressure trajectories (in the middle subfigure) indicates that the physics

is not represented accurately. Finally, the simulated pressures for these compressor ratios also

violate their bounds and raises potential safety issues in practice.

To remedy these limitions, we add a second objective function that aims at producing smooth

compressor ratios. This second objective minimizes

C2 = ∑
Pi j∈C

M

∑
m=0

[
∂ 2Rm

i j

∂ t̃2
i j

]2

(78)
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i.e., the sum of the second derivatives of the compressor ratios over time. For the trapezoidal time

discretization, the second derivatives can be approximated by

∂ 2Rm
i j

∂ t̃2
i j
≈ (Rm+1

i j −Rm
i j)− (Rm

i j−Rm−1
i j ) = Rm+1

i j +Rm−1
i j −2Rm

i j

where we map R−1
i j to RM−1

i j and RM+1
i j to R1

i j for the boundary cases. For the pseudospectral time

discretization, we use

∂ 2Rm
i j

∂ t̃2
i j
≈

M

∑
g=0

2
T̃i j

D2
mgRg

i j

where D2 is equal to the matrix product of the differential matrix D with itself (i.e., D2 = D ·D).

To integrate the two objectives, we employ a lexicographic strategy in our implementation. We

first solve the original nonlinear program with the first objective (77), and then solve the nonlinear

program with the second objective (78), while imposing the additional constraint

C1 ≤ (1+ r) f , where 0≤ r ≤ 1 (79)

where f is the objective value obtained from the first step. Intuitively, the tolerance r is a user-

adjustable parameter that quantifies the factor of increase in compression energy that can be traded

for a smoother solution. In our implementation, the second stage is initialized with the first-stage

solution. This two-stage approach had the desirable property that smoothness can really be con-

trolled effectively, which was not the case when using a weighted sum of the two objectives with

a penalty on C2 or when imposing a smoothness-enforcing constraint directly in a one-stage opti-

mization model. We now summarize our formulation. The first-stage optimization is specified by
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Figure 2 24-pipe gas system test network used in the benchmark case study. Numbers indicate nodes (blue),

edges (black), and compressors (red). Thick and thin lines indicate 36 and 25 inch pipes. Nodes

are source (red), transit (blue), and consumers (green).

min C1 : (77)

s.t. time dynamics, either:

Trapezoidal: (26), (31)− (32), or

Pseudospectral: (49), (50)− (51)

space dynamics, either:

Trapezoidal: (27), (28), (33)− (36), (38)− (41), or

Lumped element: (56)− (61)

Pressure & compression safety constraints: (62)− (65)

compressor power: (66)− (68)

junction conditions: (37), (69)− (70)

boundary parameters: (71)− (72)

periodicity constraints: (73)− (76)

(80)

while the second-stage optimization is given by

min C2 : (78)

s.t. 1st stage problem constraints: (80)

Solution tolerance: (79)

(81)

5. Case Studies
The large-scale nonlinear programs for our DOGF problems are modeled with AMPL (version

2014) [50, 51] and solved with the nonlinear solver IPOPT 3.12.2, ASL routine (version 2015) [41]

with AMPL pre-solve. The implementation is run on a Dell PowerEdge R415 with AMD Opteron
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4226 and 64 GB of ram. We present the computational results of three case studies that include a

validation of the approach, as well as results about solution quality, efficiency, and scalability.

5.1. Validation

The solution obtained using our implementation was validated on the 24-pipe benchmark gas net-

work used in prior work [34], and illustrated in Figure 2. The pressures at supply sources were fixed

at 500psi (≈ 3.45×106 Pa), the dimensionless constants for the dimensionless equation transfor-

mation were set to pN = 250psi (≈ 1.72× 106 Pa) and qN = 100 kg/s, physical parameters a =

377.968 m/s, γ = 2.5, and λ = 0.01 were used, and a time horizon T = 24 hrs (86400s) was consid-

ered. Parameters Di j,Ai j,Li j,Ri j, and Ri j were set according to the benchmark case study, as well

as time-dependent profiles of gas injections/withdrawals di(t). The benchmark network structure

and the gas draw profiles are provided in the online supplement section. For the trapezoidal space

approximation, each pipe Pi j is discretized uniformly according to its length Li j into dLi j/Ee+ 1

segments, where E is set to 10km by default. The test case is a tree network and hence the flow

direction on each pipe is known. The compressors are placed on the first segment of the ith end of

every pipe Pi j ∈ C .

The admissible pressure range is 500 to 800 psi throughout the network. A feasible solution

to the discretized problem that satisfies the pressure constraints may cause these constraints to be

violated in a high-accuracy simulation of the dynamics for the continuous problem. To address this

issue, one version of our implementation tightens the pressure bounds conservatively by 4% or

less, i.e., in the range [520,780] psi for this particular benchmark. We refer to this as “tightened”

problem, while optimizing over the nominal constraints of 500 to 800 psi is referred to as the

“regular” problem.

The optimization results were validated by using the optimized compression ratio solution as a

time-varying parameter in a validated dynamic simulation method [42, 43]. The trajectories com-

puted using the simulation are used to validate the optimization solution in two ways. First, we

quantify how much the constraints on pressure are exceeded by evaluating the L2-norm of the

violations. The violation measure aggregates violations over the 24-hour period by integrating the

square of the pressure violations (psi) of the bounds at every junction. It is defined by

vp =

√√√√ ∑
Pi j∈P

[
∫ T

0
(pi j(t,0)− pmax)+dt +

∫ T

0
(pmin− pi j(t,Li j))+dt]2 (82)
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Table 1 Aggregated Pressure Bound Violations (vp, psi-days): 24 Pipe. (simulation: 10km space

discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.913 0.899 0.000 0.000 0.939 0.876
50tp 0.000 0.000 0.076 0.058 0.000 0.000 0.116 0.090
100tp 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000
200tp 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.451 0.205 0.000 0.000 0.186 0.059
50tp 0.000 Time Limit 0.026 0.026 0.000 0.000 0.000 0.021

Table 2 Aggregated Pressure Bound Violations (vp, psi-days): 24 Pipe. (simulation: 3km space

discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.951 0.916 0.000 0.000 0.994 0.896
50tp 0.000 0.000 0.100 0.071 0.000 0.000 0.146 0.109
100tp 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
200tp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.404 0.175 0.000 0.000 0.162 0.037
50tp 0.000 Time Limit 0.020 0.019 0.000 0.000 0.000 0.035

where (x)+ = x if x≥ 0 and (x)+ ≡ 0 if x < 0. The unit of the metric is psi-days. Tables 1 and 2 list

solution values found using various time discretizations, smoothing parameter r, the tightened vs.

regular problems, and using 3km and 10km space discretization settings. With tightened bounds,

the optimization solution has no, or negligible, violations in the studied configurations.

Figure 3 depicts the optimal compressor ratio functions for 25 and 200 trapezoidal time dis-

cretization, 25 and 50 pseudospectral time discretization, with tightened and regular constraints,

respectively, and with E = 10km spatial trapezoidal discretization and lumped element approxi-

mation. The second-stage tolerance r is set to 5%. The results show that the compressor ratios over

time are smooth, producing meaningful physical solutions and control profiles that can be imple-

mented by operators. This is true even for coarse time discretizations. The only exception is the

pseudo-spectral discretization (25tp, PS time, TZ space, 5%, tightened).
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Table 3 Maximum relative difference (%) in pressure between simulation and optimization: 24 Pipe

(simulation: 10km space discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.560 2.974 3.642 3.408 3.410 5.756 5.641 3.413
50tp 1.935 2.668 1.503 2.767 2.721 3.350 3.302 2.431
100tp 2.062 2.480 2.126 1.723 1.883 3.500 2.137 2.923
200tp 1.412 1.335 1.248 1.314 1.291 1.499 1.267 1.399

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.936 4.777 4.107 4.785 3.861 4.767 4.001 4.694
50tp 0.922 Time Limit 1.004 0.950 0.734 0.795 0.806 0.756

The last column of Figure 3 describes validation results that compare the optimization solutions

with simulations. The simulation results were found by providing the optimal control solutions as

input to a dynamic simulation of a differential algebraic equation (DAE) model of the network

[34] and the adaptive time-stepping solver ode15i in MATLAB. Figure 3 reports the relative

difference between the optimized pressure profiles pm
j (re-scaled from dimensionless to nominal

unit) for every junction in the network with the pressure trajectories pm?
j obtained from simulations

over time. Table 3 and Table 4 give the maximum relative error (in %) across all the pipe junctions

and all the time steps for our four discretization schemes with the formula:

max
0≤m≤M

[max
J j∈J

(|
pm

j − pm?
j

pm
j
|)]×100% (83)

We tested the test cases with both regular and tightened constraints, with a 5% and 10% re-

optimization tolerance, and with both 3km and 10km space discretization settings in simulations.

With only 25 time points, the (time and space) trapezoidal methods gave smooth control profiles

with less than 4% of error when compared with simulations. This error disappears almost entirely

with 200 time points. In general, the lumped element method with a trapezoidal discretization for

time gives slighly less accurate results.

Because the sources of the compared pressure profiles are qualitatively very different, i.e., opti-

mization of algebraic equations that discretize PDEs over a fixed grid compared with adaptive

time-stepping solution of an ODE system, these results are a powerful cross-validation of both

models.
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Table 4 Maximum relative difference (%) in pressure between simulation and optimization: 24 Pipe

(simulation: 3km space discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.584 3.014 3.732 3.443 3.420 5.744 5.625 3.451
50tp 1.937 2.591 1.537 2.697 2.658 3.285 3.330 2.340
100tp 2.047 2.391 2.037 1.618 1.833 3.377 2.167 2.906
200tp 1.357 1.225 1.222 1.268 1.251 1.391 1.274 1.365

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.928 4.765 4.049 4.716 3.807 4.772 3.990 4.584
50tp 0.957 Time Limit 0.996 0.951 0.743 0.738 0.776 0.761

5.2. Solution Quality and Efficiency

Table 5 reports the objective value C1, computation time, and the number of variables of the pro-

posed method for: a) trapezoidal time, trapezoidal space discretization, b) trapezoidal time, lumped

element space discretization, c) pseudospectral time, trapezoidal space discretization, and d) pseu-

dospectral time, lumped element space discretization, with smoothness parameters r equals to 5%

and 10%. We vary time points from 25pt up to 300pt/50tp for trapezoidal/pseudospectral time dis-

cretization respectively. The table gives the value of the C1 objective after the first stage, and also

in the second stage for r = 5% and 10%. CPU times in seconds reported by IPOPT for the first

and second stages are also given. First, observe that enforcing the smoothness of the solution does

not fundamentally decrease the quality of the C1 objective, which is important from an operational

standpoint. Second, as expected, refining the time discretization increases the objective value in

the various trapezoidal schemes (since more constraints are added). Third, for the trapezoidal time

discretization, the convergence rate is fast and the solutions obtained with a coarse discretization

are already of high quality, as illustrated in Figure 3. The lumped element approximation fur-

ther reduces the model size by more than 50% and increases computational efficiency by factors

from 4 to 25 depending on the accuracy of the discretization. As a result, the method exhibits

excellent performance. Consider the time granularities with 25 and 50 points: For r = 10%, the

method requires less than 10 seconds, which indicates that it can be used during real-time opera-

tions. On the other hand, the pseudospectral time discretizations are orders of magnitude slower

than trapezoidal scheme. Pseudospectral methods link every pressure/flux differential variable to

pressure/flux variables at every time step [47, 49], producing a dense constraint matrix. Since the
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Table 5 Objective Value (C1) and runtimes on 24 Pipe Network.

Trapezoidal time - trapezoidal space discretization Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs) Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10% r = 5% 10% r = 5% 10%

25tp 11441 2.012 2.112 2.213 12 22 8 4785 2.003 2.103 2.203 3 5 3
40tp 18041 2.088 2.193 2.297 35 78 22 7545 2.068 2.172 2.275 6 12 6
50tp 22441 2.073 2.176 2.280 32 75 28 9385 2.069 2.172 2.276 9 21 10
60tp 26841 2.091 2.195 2.300 43 164 42 11225 2.088 2.192 2.297 25 29 10
80tp 35641 2.106 2.211 2.316 45 208 55 14905 2.096 2.201 2.306 22 49 23
100tp 44441 2.126 2.233 2.339 131 230 73 18585 2.100 2.205 2.310 65 80 32
150tp 66441 2.105 2.210 2.316 266 800 280 27785 2.105 2.210 2.315 163 335 86
200tp 88441 2.136 2.243 2.350 545 582 447 36985 2.114 2.220 2.325 320 299 145
300tp 132441 2.136 2.243 2.349 32169 2028 639 55385 2.115 2.221 2.327 1212 309 345

Pseudospectral time - trapezoidal space discretization Pseudospectral time - lumped element space discretization

Var. no. Objective Value CPU Time (secs) Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10% r = 5% 10% r = 5% 10%

25tp 11389 2.168 2.276 2.384 337 572 435 4759 2.161 2.270 2.378 72 185 126
50tp 22339 2.114 2.219 2.325 17160 31882 46687 9334 2.147 2.255 2.362 14309 30535 29836

iteration counts of IPOPT for both types of discretization are similar in scale, the increased matrix

density in the pseudospectral discretization is responsible for the observed loss in efficiency.

5.3. Scalability

To study the scalability of the proposed method, two additional instances are considered: Gaslib-40

and Gaslib-135 from the GasLib library [52]. The pressure ranges are set to 500 to 800 psi and 500

to 1000 psi for Gaslib-40 and Gaslib-135 respectively, and the source pressures are set to 600 psi.

Tables 6–8 present the results on solution quality and efficiency. We omit results for pseudospectral

time method since it does not converge or scales poorly on both benchmarks.

The trapezoidal time methods scale well on Gaslib-40 and they exhibit similar behavior as in the

24-pipe network. In particular, it can be solved in less than two minutes. The Gaslib-135 network

is much more challenging and consists of more than 6000km of pipes. Hence, we only consider

the lumped element method and relax the acceptable tolerances (termination condition) of IPOPT

from 10−6 to 10−4 given the size of the test case. The cases that satisfy the acceptable tolerance but

fail to reach the optimality region (IPOPT default: 10−8) are marked with ‘∗′ in the objective col-

umn. The results show that the lumped element method finds high-quality solutions in reasonable

time, solving a 25pt discretization in about an hour. The objective function does not necessarily

increase monotonically due to the difficulty in reaching the feasibility region. Still these results are

promising and demonstrate the method’s ability to find high-quality solutions to large networks.
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Table 6 Objective Value (C1) and runtimes on Gaslib-40 Pipe Network.

Trapezoidal time - trapezoidal space discretization Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs) Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10% r = 5% 10% r = 5% 10%

20tp 20707 0.260 0.273 0.286 191 28 24 6910 0.254 0.267 0.279 51 4 4
30tp 30567 0.294 0.309 0.323 541 54 268 10200 0.297 0.312 0.326 45 40 39
40tp 40427 0.297 0.312 0.327 1143 164 444 13490 0.310 0.326 0.341 142 61 90
50tp 50287 0.311 0.326 0.342 1316 213 1513 16780 0.311 0.326 0.342 148 84 153
100tp 99587 0.321 0.337 0.353 9395 2666 1953 33230 0.322 0.339 0.355 2566 648 575
150tp 148887 0.323 0.339 0.355 15171 9363 8003 49680 0.325 0.342 0.358 5139 3309 2605

Table 7 Maximum relative difference (%) in pressure between simulation and optimization: Gaslib-40

Trapezoidal time & Trapezoidal time &
trapezoidal space lumped element space

Time pt. 5% 10% 5% 10%

20tp 6.198 – 5.705 4.086
50tp 1.835 1.773 2.119 2.068

100tp 3.915 3.878 3.832 3.864
150tp 3.381 3.422 3.362 3.403

Table 8 Objective Value (C1) and runtimes on Gaslib-135 Pipe Network.

Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

15tp 18769 2.027* 2.128 2.229 598 112 117
20tp 24634 2.492* 2.617 2.741* 713 314 445
25tp 30499 2.203* 2.313 2.423 1788 330 236

We also report results on the validation of the solutions for Gaslib-40. Figure 4 presents the pres-

sure and flow profiles resulting from simulations. The figure shows the differences in percentage

for each junction over time between optimization and simulation on pressure trajectories. Table 7

again shows the maximum relative error across all the pipe junctions. In this larger benchmark,

the method produces smooth control profiles with less than 2% of error using 50 trapezoidal time

points. Figure 5 further shows two compression solutions on the Gaslib-135 benchmark.

The results in Figures 3–4 also show the benefits and justify our two-stage approach. The figures

demonstrate that the largest errors occur when there are fast changes in the demands and are not

due to compressor ratios.

5.4. Extensions & Variants

We now present a related optimization problem to showcase the generality of the dynamic

gas pipeline flow modeling proposed here. With the growing number of gas-fired generators, it
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becomes important in planning and signing contracts to understand how much gas could be sup-

plied, packed into the system, and delivered to potential customers at any time. It is also important

to understand the bottlenecks of transmission networks when planning for future upgrades.

In this section, we modify our optimization problem for the 24-pipe system to maximize the

outflows for a set of important demand points D ⊆J , while keeping the flow profiles for the

other demands J \D fixed. In other words, equation (71) will be relaxed for demands in D . To

align our experiments with industry practice, we seek the maximal outflows that are steady (i.e.,

constant over time). Thus, we create decision variables f j for functions J j ∈D and change (69) for

these junctions to

∑
Jk∈J :Pjk∈P

q̃m0
jk − ∑

Ji∈J :Pi j∈P
q̃mN

i j + ∑
Jk∈J :Pjk∈P

q̃m0
jku− ∑

Ji∈J :Pi j∈P
q̃mN

i jl = f j, f j <= 0 (84)

where f j is now steady. We then replace (77) by

max M1 =− ∑
J j∈D

c j f j (85)

where c j is the node-dependent costs. We further add penalty terms in (78) to smooth the source

flux S which act as the slack variable in our formulation. This gives

C2 = ∑
Pi j∈C

M

∑
m=0

[
∂ 2Rm

i j

∂ t̃2
i j

]2

+wp ∑
J j∈S

M

∑
m=0

[
∂ 2 f m

j

∂ t2

]2

(86)

where wp is the weight of the new penalty and f m
j are the flux variables of the source. We use the

same method as in (78) to approximate the second derivatives of f m
j for both the trapezoidal and

pseudospectral discretizations. Because we switch from minimization to maximization, we flip the

inequality in (79) to obtain:

M1 ≥ (1− r)v, where 0≤ r ≤ 1, (87)

and where v is the objective value obtained in the first step.

We report experimental results on on the 24 pipe system with three different cases:

1. Maximizing the outflow integral of 5 nodes with equal costs: c j = 1 and D = {6,8,12,13,19},

2. Maximizing outflow of only node 19: c j = 1 and D = {19}, and

3. Case 1 with different weights/preferences c j as shown in Table 9.
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Table 9 Gas price ($ per 10 kg mass) and optimized demand (kg/s).

Trapezoidal time, lumped space, 50 time point, r = 7%

Node number Gas price Demand (case 1) Demand (case 3)

6 1.0 21.582 0.000
8 1.5 16.498 36.067

12 2.0 87.537 38.836
13 2.0 0.057 0.025
19 3.0 0.000 46.364

5.4.1. Case 1. Table 10 shows the model size, objective values M1, and computational runtimes

for our 4 different discretization schemes on case 1 with varying number of time points and with

two re-optimization tolerances: r = 3% and 7%. The smoothness weighting wp is set to 50. Fig-

ures 6 and 7 depict the demand, as well as the compression ratio, the pressure and the flux at

each junction point, the relative error (in %) between simulation and optimization, and the opti-

mized maximum demands on one of the settings: 50 trapezoidal time points with lumped element

discretization in space. We obtain similar results to those of Sections 5.2–5.3. At the coarser dis-

cretization, the error between optimization and simulation is approximately 2%. The convergence

rate is fast for the trapezoidal time discretization and the solutions obtained with a coarse dis-

cretization are already of high quality. The lumped element approximation once again decreases

the size of the model and improves the computational efficiency significantly. The pseudospectral

time discretization is still orders of magnitude slower than the trapezoidal schemes.

Observe that the solution tends to allocate more flux for node 12 (refer to Figure 6/Table 9),

located in the top-left portion of the 24-pipe network (see Figure 2), when compared to the other

regions (e.g. the top-right and bottom-left regions). The path between the source at node 1 to node

11 consists of: a) a total of 165 km of three 36” diameter pipes, and b) one 5 km long 25” diameter

pipe. If we roughly estimate resistance based on distance divided by diameter (in the unit of km/m),

this will give a resistance metric of 188 (km/m). The path between the source at node 1 to node 5

consists of: a) one 100 km long 36” diameter pipe, and b) a total of 50km of three 25” diameter

pipes. This will also give a resistance metric of 188 (km/m). However, the pipe length of pipe 11

(or 12) is slightly shorter than pipe 5 (or the combined length of pipe 6 and 7). This results in a

lower resistance for allocating flux to the top-left region than the top-right region. Since we aim

at minimizing compression energy for all of the compressors, the optimization model naturally

chooses to optimize the path of least resistance (for compressor 2). Allocating flux to the path with

more resistance would incur more compression energy (on compressor 3).
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Table 10 Objective Value (M1) and runtimes on the maximum contractable throughput model: case 1

Trapezoidal time - trapezoidal space discretization Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs) Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7% r = 3% 7% r = 3% 7%

25tp 11576 1.366 1.325 1.271 5 7 4 4920 1.362 1.322 1.267 3 1 1
50tp 22701 1.356 1.315 1.261 25 17 36 9645 1.351 1.311 1.257 12 5 7
100tp 44951 1.349 1.309 1.255 118 202 86 19095 1.345 1.304 1.251 88 21 26
200tp 89451 1.348 1.308 1.254 1735 196 323 37995 1.345 1.304 1.251 1017 143 248

Pseudospectral time - trapezoidal space discretization Pseudospectral time - lumped element space discretization

Var. no. Objective Value CPU Time (secs) Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7% r = 3% 7% r = 3% 7%

25tp 11524 1.341 1.301 1.247 297 162 215 4894 1.350 1.309 1.255 112 141 186
50tp 22599 1.352 1.312 1.258 33446 20305 17780 9594 1.348 1.308 1.254 8262 13710 11775

5.4.2. Cases 2 and 3. Case 2 is essentially a simplification of case 1, with the goal of finding

the maximum contractable throughput for a specific demand point in the presence of the remaining

known load profiles. Case 3 further considers price weights among different demands, with the goal

to find the optimal contractable throughput based on maximum revenue to the pipeline operator.

The optimal solution will then represent the maximum contractable revenue that the gas transmis-

sion system can obtain by optimizing allocation of supplies to flexible customers with different

offer bids. We repeat the computational studies as done in previous sections on both cases with

the trapezoidal time discretization and the lumped element space approximation. Table 11 shows

the model size, objective values M1, and computational runtimes. Figure 6 and Table 9 present one

of the solutions and compare it with case 1. Figures 7 and 8 also show the compression ratio, the

pressure, and the flux at each junction point, and the relative error (in %) between simulation and

optimization for 50 time points. Once again, the results are consistent with the earlier case studies.

The errors could be further reduced by increasing the discretization to 200 time points (Figure 8).

Overall, these results show that the proposed method produces consistent results across a number

of case studies and objectives.

6. Conclusions

This paper investigated the Dynamic Optimal Gas Flow (DOGF) problem of pipeline flow manage-

ment whose goal is to minimize compressor operating costs while maintaining pressure constraints

under dynamic intra-day conditions where offtakes by customers are described by time-dependent

mass flow functions. This study was motivated by the growing reliance of electric power systems on
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Table 11 Objective Value (M1) and runtimes: case 2 and 3

Case 2 Case 3

Var. no. Objective Value CPU Time (secs) Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7% r = 3% 7% r = 3% 7%

25tp 4812 0.727 0.705 0.676 3 1 1 4920 2.955 2.867 2.748 3 2 1
50tp 9437 0.704 0.683 0.654 7 4 5 9645 2.913 2.826 2.709 12 4 5

100tp 18687 0.695 0.674 0.647 51 22 13 19095 2.892 2.805 2.689 59 24 24
200tp 37187 0.696 0.675 0.647 500 178 330 37995 2.893 2.807 2.691 359 89 180

gas-fired generation, which has been driven by the need to balance intermittent sources of renew-

able energy and low prices for new power plant construction and natural gas. This deeper integra-

tion has increased the variation and volume of flows through natural gas transmission pipelines,

making progress beyond steady-state optimization a critical operational need for controlling and

optimizing natural gas networks. Maintaining efficiency and security under such dynamic condi-

tions requires optimization methods that accurately account for intra-day transients and can quickly

compute solutions to follow generator re-dispatch.

This paper presented an efficient scheme for the DOGF that relies on a compact yet appropri-

ately accurate representation of gas flow physics. The paper also detailed two time- and two space-

discretization methods and formalized the nonlinear model for optimization. A two-stage approach

is applied to minimize energy costs and maximize smoothness of compressor ratios to obtain phys-

ically realistic solutions. The resulting large-scale nonlinear programs are solved using a general

interior-point method, and the results are validated against an accurate simulation of the dynamic

equations and a recently proposed state-of-the-art method. The novel optimization scheme yields

solutions that are feasible for the continuous problem and practical from an operational standpoint.

Scalability of the scheme was demonstrated using three networks with 25, 40, and 135 nodes, 24,

45, and 170 pipes, and total pipeline lengths of 477, 1118, and 6964 kilometers respectively. We

further extended the formulation to tackle the maximum throughput problem, demonstrating the

flexibility of our model. This opens new directions for the investigation of previously computa-

tionally difficult control and optimization problems involving gas networks, as well as integration

of pipeline operations with electric power systems.
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Figure 3 From top to bottom (24-System): Various discretization schemes: trapezoidal rule with var-

ious numbers of time points (tp), trapezoidal(TZ)/pseudospectral(PS) time scheme, trape-

zoidal(TZ)/lumped element(LU) space scheme, 5% re-optimization tolerance, and tight-

ened(TI)/regular(RE) constraints. From left to right: Optimal compressor ratios; Pressure trajec-

tories from simulation using the controls; Flux trajectories from the same simulation; Relative

difference between pressure solution from optimization and pressure trajectories from simulation.
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Figure 4 From top to bottom (Gaslib-40):: Various discretization schemes with: 30 and 150 time points (tp),

trapezoidal(TZ) time scheme, trapezoidal(TZ) and lumped element(LU) space scheme, and 10% re-

optimization tolerance. From left to right: Optimal control solution; Pressure trajectories from sim-

ulation using the controls; Flux trajectories from the same simulation; Relative difference between

pressure solution from optimization and pressure trajectories from simulation.
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Figure 5 Compression ratio solutions for Gaslib-135 case studies, with 22 trapezoidal (TZ) time points,

lumped element (LU) space, and re-optimization tolerance of r = 5%.
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Figure 6 Optimized demands(kg/s). From left to right: case 1: r = 3% and 7%, and case 3: r = 3% and 7%.
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Figure 7 From top to bottom: Case 1 with 3% and 7% re-optimization tolerance, and case 2 with 3% and 7%

re-optimization tolerance. Both with 50 trapezoidal time point, and lumped space approximation.
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Figure 8 From top to bottom: Case 3 with 3% and 7% re-optimization, 50 trapezoidal time point, and lumped

space approximation; Case 3 with 3% and 7% re-optimization, 200 trapezoidal time point, and

lumped space approximation.
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