
A Value Ordering Heuristic for Solving Ultra-Weak
Solutions in Minimax Weighted CSPs∗

Jimmy H.M. Lee & Terrence W.K. Mak
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{jlee,wkmak}@cse.cuhk.edu.hk

Abstract—Minimax Weighted Constraint Satisfaction Prob-
lems (formerly called Quantified Weighted CSPs) are a frame-
work for modeling soft constrained problems with adversarial
conditions. In this paper, we study the effects of a value ordering
heuristic in solving ultra-weak solutions on top of the alpha-
beta tree search with constraint propagation. The value ordering
heuristic is based on minimax heuristics from adversarial search,
which selects values for variables according to the semantic of
quantifiers by considering the problem as a two-player zero-
sum game. In practice, implementing the heuristic requires costs
approximations, and we devise three heuristic variants: HUnary,
HBinary, and HFullBinary to approximate costs. In particular, we
observe that combining these heuristic variants with consistency
notions can achieve a better efficiency and a further reduction
of search space. We perform experiments on three benchmarks
to compare the effects on applying these heuristic variants, and
confirm the feasibility and efficiency of our proposal.
Index Terms—constraint optimization, soft constraint satisfac-

tion, value ordering heuristics, minimax game search

I. INTRODUCTION
Our work aims to tackle a class of optimization problems

with adversarial conditions. As an example, we begin with
a graph coloring game in which numbers are used instead
of colors. The game is played by two players, and nodes are
partitioned into two sets: a set S1 for player 1 and a set S2 for
player 2. The game is played in a turn-based manner, and in
each turn, a node corresponding to the turn will be chosen. If
the chosen node belongs to set S1 (S2 resp.), player 1 (player
2 resp.) will write a number on the node. We assume both
players know which node will be chosen at which turn before
the game starts, and they can observe the numbers written at
previous turns. After all the nodes are chosen, player 1 obtains
a reward equal to the total difference between numbers of
adjacent nodes. However player 2 is player 1’s worst adversary,
and the goal of player 2 is to minimize player 1’s reward. The
natural question for player 1 is to find the best strategy to
maximize his/her reward against his/her worst adversary.
The graph coloring game described is a typical two-person

zero-sum game with perfect information [1], [2], and we can
solve it at different levels. Allis [3] proposes three solving lev-
els for this type of games: ultra-weakly solved, weakly solved,

∗We are grateful to the anonymous referees for their constructive comments.
The work described in this paper was generously supported by grants
CUHK413808 and CUHK413710 from the Research Grants Council of Hong
Kong SAR.

and strongly solved. Ultra-weakly solved means the game-
theoretic value of the initial position has been determined.
This means we can determine the outcome of the scenario
when both players are playing perfectly (i.e. best-worst case).
Finding an ultra-weak solution for the graph coloring game
indicates the guarantee reward for player 1, i.e. the reward
player 1 can at least obtain regardless of player 2’s moves.
Weakly solved means a strategy, noted as winning strategy [4]
in Quantified CSPs [5], for the initial position to achieve
the game-theoretic value against any opposition is found. For
the graph coloring game, solving the problem weakly allows
player 1 to maximize his rewards against any moves (possibly
not worst case move) played by player 2. Strongly solved is
being used for a game for which such a strategy has been
determined for all legal positions. A strongly solved solution
for the graph coloring game allows player 1 to maximize his
rewards not only against any moves played by player 2, but
also against all moves played by himself/herself. Once a game
is solved at a stronger level, the game is automatically solved
at weaker ones. Finding solutions at stronger levels, however,
implies substantially higher computation requirements. In par-
ticular in terms of space, ultra-weak solutions are linear in
size, while the other two stronger ones are exponential. In
this paper, we focus on ultra-weakly solved solutions, and the
primal goal is to understand how well we can defend against
the worst adversaries for planning purposes.
Minimax Weighted Constraint Satisfaction Problems

(MWCSPs) (previously called Quantified Weighted Constraint
Satisfaction Problems) [6], [7] are proposed to tackle
optimization problems with adversarial conditions, combining
quantifier structures from Quantified CSPs [5] to model the
adversaries and soft constraints from Weighted CSPs [8]
to model costs information. Previous work gives formal
definitions for the framework, introduces how to adopt alpha-
beta prunings to tackle the problem in branch and bound,
suggests sufficient pruning conditions to achieve prunings and
backtrackings, and introduces various consistency notions to
increase the efficiency of the search.
In this paper, we study the effects of a value ordering

heuristic in solving ultra-weak solutions of MWCSPs on top
of the alpha-beta tree search. The value ordering heuristic is
based on minimax heuristics from adversarial search [9], by
viewing MWCSPs as a two-player zero-sum game. The two

players,min player andmax players, compete with each other.
The min player controls minimization variables to minimize
costs, while the max player controls maximization variables
to maximize costs. Both of them can observe each other’s
moves, and play the game by assigning values to variables
in a turn-based manner. By viewing the problem as a game,
ultra-weak solutions for MWCSPs will then be scenarios when
both players are playing perfectly, where the min player
(max player resp.) chooses values leading to sub-problems
with the smallest (largest resp.) costs. By following the
game semantics, if a variable has min (max resp.) quantifier,
the value ordering heuristic will then choose values leading
to sub-problems with the smallest (largest resp.) costs. In
practice, however, implementing such heuristic is infeasible
and requires costs approximations. We propose three heuristic
variants: HUnary, HBinary, and HFullBinary to perform costs
approximation. In particular, we observe that combining these
heuristic variants with consistency notions can achieve a better
efficiency and a further reduction of search space. We perform
experiments on three benchmarks to compare the effects on
applying these heuristic variants, and confirm the feasibility
and efficiency of our proposal.

II. BACKGROUND
In the first part, we give definitions and semantics of

MWCSPs, followed by an example. In the second part, we
highlight the general branch and bound algorithm with alpha-
beta prunings for solving MWCSPs.

A. Definitions and Semantics
A Minimax Weighted Constraint Satisfaction Problem

(MWCSP) [6], [7] P is a tuple (X ,D, C,Q, k), where X =
(x1, . . . , xn) is defined as an ordered sequence of variables,
D = (D1, . . . , Dn) is an ordered sequence of finite domains, C
is a set of soft constraints, Q = (Q1, . . . , Qn) is a quantifiers
sequence where Qi is either max or min associated with xi,
and k is the global upper bound. We denote xi = vi an
assignment assigning value vi ∈ Di to variable xi, and the
set of assignments l = {x1 = v1, x2 = v2, . . . , xn = vn} a
complete assignment on variables in X , where vi is the value
assigned to xi. A partial assignment l[S] is a projection of
l onto variables in S ⊆ X . C is a set of soft constraints
(sometimes called cost functions), each CS of which repre-
sents a function mapping tuples corresponding to assignments
on a subset of variables S, to a cost valuation structure
V (k) = ([0...k],⊕,≤). The structure V (k) contains a set of
integers [0...k] with standard integer ordering ≤. Addition ⊕
is defined by a ⊕ b = min(k, a + b). For any integer a and
b where a ≥ b, subtraction � is defined by a � b = a − b if
a �= k, and a� b = k if a = k. Without loss of generality, we
assume the existence of C∅ denoting the lower bound of the
minimum cost of the problem. If it is not defined, we assume
C∅ = 0. The cost of a complete assignment l in X is defined
as: cost(l) = C∅ ⊕⊕

Cs∈C Cs(l[S]).
In an MWCSP, ordering of variables is important. Without

loss of generality, we assume variables are ordered by their

Fig. 2. Game graph G
for Example 1

Fig. 3. Constraints for Example 1

indices. We define a variable with min (max resp.) quantifier
to be a minimization variable (maximization variable resp.).
Let P[xi1 = ai1][xi2 = ai2] . . . [xim = aim] be the sub-
problem obtained from P by assigning value ai1 to variable
xii , assigning value ai2 to variable xi2 ,. . . , assigning value
aim to variable xim . Let firstx(P) returns the first unassigned
variable in the variable sequence. If there are no such variables,
it returns ⊥. Suppose l is a complete assignment of P . The
A-cost(P) of an MWCSP P is defined recursively as follows:

A-cost(P) =

⎧⎪⎨
⎪⎩

cost(l), if firstx(P) = ⊥
max(Mi), if firstx(P) = xi and Qi = max

min(Mi), if firstx(P) = xi and Qi = min

where l is the complete assignment of the completely assigned
problem P (i.e. firstx(P) = ⊥), and Mi = {A-cost(P[xi =
v])|v ∈ Di}. An MWCSP P is satisfiable iff A-cost(P) < k.
We now define three solution concepts corresponding to the

three solved levels introduced in the introduction. An ultra-
weak solution [7] of an MWCSP P is a complete assignment
{x1 = v1, . . . , xn = vn} s.t. A-cost(P) = A-cost(P[x1 =
v1] . . . [xi = vi]), ∀1 ≤ i ≤ n. Ultra-weak solution cor-
responds to the scenario where both players are playing
perfectly. Without loss of generality, we assume the max
player is the adversary. A weak solution [7] (strong solution [7]
resp.) is a set of functions F , where each function fi ∈ F
corresponds to a min variable xi. Let Gi be the set of do-
mains of max variables (all variables resp.) preceding xi, i.e.
Gi = {Dj ∈ D|Qj = max∧j < i} (Gi = {Dj ∈ D|j < i}
resp.). We define fi : ×Dj∈Gi

Dj �→ Di. If Gi is an empty set,
then fi is a constant function returning values from Di. Let P ′

be a sub-problem of an MWCSP P , where the next unassigned
variable xi is a min variable, and l be the set of assigned
values for max variables (all variables resp.) xj where j < i.
For weak solutions, we further require the assigned values of
min variables xj where j < i in P ′ follow fj . We require all
fi to satisfy: A-cost(P ′[xi = fi(l)]) = A-cost(P ′). In other
words, we require fi(l) to return the best value for the min
player, and the set of functions F will then be a best strategy
for the min player. This work focuses on ultra-weak solutions.
Example 1: We use the graph coloring game described in

the introduction as an example. Given a graph coloring game
with a graph G of four nodes n1, n2, n3, and n4 and three
edges e1,2, e1,3, and e2,4 as shown in Figure 2. We have two
players, player A and player B, playing in the game. Player

m a x x
1

m i n x 2

m a x x
3

m i n x 4

2

1 2

2

1 2

0

1 2 3

1 20

3

1

1 2 3

2 31

2

1 2 3

3 42
3

3

1 2

1

1 2 3

1 22

2

1 2 3

2 33

3

1 2 3

3 44
3

4

1 2

2

1 2 3

3 24

3

1 2 3

4 35

4

1 2 3

5 46
3

1

Fig. 1. The labeling tree for Example 1

A will write numbers on node n1 and n3 and player B will
write numbers on node n2 and n4. To simplify the example,
we assume both players can only write integers ranging from
1 to 3. At turn i, node ni will be chosen. Both players are
allowed to observe numbers written by players in previous
turns. Suppose player B is player A’s adversary. The problem
is to help player A finding his/her guaranteed reward.
We model the problem by a Minimax Weighted CSP P

with four variables x1,x2,x3 and x4, and each variable is
associated with a domain of [1..3]. Variable xi is used to
represent the number being written on node ni. We associate
max quantifiers to variable x1 and x3 and min quantifiers to
variable x2 and x4. We use three binary constraints C1,2, C1,3

and C2,4 to model costs given by edges e1,2, e1,3 and e2,4
in the graph G. Figure 3 shows the constraint graph of the
problem P . For unary constraints, unary costs are depicted
inside a circle and domain values are placed above the circle.
For binary constraints, binary costs are depicted as labels on
edges connecting the corresponding pair of values. To simplify
the drawing, we skip all zero unary costs and remove edges
with zero binary costs. By observing the constraint graph, we
can easily infer the maximum costs player A can get is less
than 7. Therefore, we set the global upper bound k to 7.
We show a labeling tree in Figure 1 for one sub-problem

P ′ = P[x1 = 1]. By following the tree, we can easily infer
the A-cost for the sub-problem P ′ is 2, and {x1 = 1, x2 =
1, x3 = 3, x4 = 1} is one of the ultra-weak solutions for P ′.

B. Alpha-Beta Prunings in B & B

MWCSPs can be solved by applying alpha-beta pruning
in branch and bound search [6] as shown in Algorithm 1,
by treating max and min variables as max and min players
respectively. Alpha-beta pruning utilizes two bounds, α and β,
for storing the current best costs for max and min players. We
rename α and β as lower lb and upper ub bounds to fit with
the common notations for bounds in constraint and integer
programming. We initialize lb (ub resp.) to the lowest (largest
resp.) possible costs, i.e. 0 (k resp.), and maintain the two
bounds during assignments by the branch and bound. When a
smaller costs (larger costs resp.) for min (max resp.) variable
is found after exploring sub-trees, ub (lb resp.) will be updated

(line 8 and 10). If lb ≥ ub (line 12), then one of the previous
branch must dominate over the current sub-tree, and we can
perform backtrack.

Algorithm 1 Alpha-beta for MWCSPs
1: function alpha_beta(P ,lb,ub):
2: if firstx(P) == ⊥ then
3: return cost(P)
4: end if
5: xi = firstx(P)
6: for v ∈ Di do
7: if Qi == min then
8: ub = min(ub, alpha_beta(P[xi = v], lb, ub))
9: else
10: lb = max(lb, alpha_beta(P[xi = v], lb, ub))
11: end if
12: if ub <= lb then
13: break
14: end if
15: end for
16: return (Qi == min)?ub : lb

III. A VALUE ORDERING HEURISTIC FOR MINIMAX
WEIGHTED CSPS

Value ordering heuristic is an important topic in constraint
solving community, and has been successfully applied in
solving many constraint problems including: classical con-
straint optimization problems (COPs), Weighted CSPs, and
Quantified CSPs. This section is splitted into two parts. In
the first part, we describe the principle of our value ordering
heuristic, followed by an example. In the second part, three
variants approximating the heuristic are given.

A. Principle
In Weighted CSPs, our goal is to find complete assignments

with minimum costs. We often apply a value ordering heuristic
which orders values with increasing order of unary costs [10],
[11]. The idea behind is that choosing a value with smaller
unary costs will have a higher chance leading to optimal
solutions. Even if the search cannot obtain optimal solutions,
the heuristic will have a high chance leading to solutions
close to the optimal and improve the upper bound quickly.
In Quantified CSPs, Stynes and Brown devise a type of
heuristics called solution-focused adversarial heuristics [12].

The heuristics view Quantified CSPs as two-person zero-sum
games and successfully applied the minimax heuristics from
adversarial search. MWCSPs are generalizations of Weighted
CSPs and Quantified CSPs [6], and can be also viewed as two-
person zero-sum games. We show that concepts and ideas for
both frameworks can be adapted and re-used, and our value
ordering heuristic can be seen as a further extension of Stynes
and Brown’s work [12] to MWCSPs, which also considers
costs information from soft constraints.
We now describe the idea of our value ordering heuristic.

There are two players: min player and max player compet-
ing with each other. The min player controls minimization
variables to minimize costs, while the max player controls
maximization variables to maximize costs. They can observe
the other player’s moves and are played in a turn-based
manner, by assigning values to variables. By viewing the
problem as a game, ultra-weak solutions for MWCSPs will
then be scenarios where both players are playing perfectly.
If both players are playing perfectly, then the min player
will choose values which can lead to sub-problems with the
smallest A-costs. On the other hand, the max player will
choose values which can lead to sub-problems with the largest
A-costs. We now define the desired heuristic formally.
Definition 1: Given an MWCSP P with the next unassigned

variable xi (i.e. firstx(P) = xi). The minimax adversarial
heuristic is a function selecting v ∈ Di for xi where ∀u ∈ Di:

A-cost(P[xi = v]) ≤A-cost(P[xi = u]), if Qi = min

A-cost(P[xi = v]) ≥A-cost(P[xi = u]), if Qi = max

The above definition always assumes assigned values during
backtrack (in branch and bound) will be removed from the do-
main, and these values will not be considered in the heuristic.
Lemma 1: Given an MWCSP P . By applying the minimax

adversarial heuristic on branch and bound search (in Algo-
rithm 1), the first encountered complete assignment must be
an ultra-weak solution.
The proof follows from the heuristic and problem definitions.
However, computing the heuristic exactly in branch and

bound for an MWCSP in general is too computational expen-
sive. It is essentially equivalent to solving the whole problem.
One way to relax the requirement is to restrict the heuristic
to examine only parts of the problem, hence, reducing the
computational requirements. Even the heuristic cannot lead
the search to the desired solution, if we can obtain (complete)
assignments which are close enough, we can tighten the bound
earlier and achieve better prunings. We give an example in
Example 2 to illustrate the idea.
Example 2: We re-use the graph coloring game in Exam-

ple 1. Suppose now the search finished searching the sub-
problem P ′ = P[x1 = 1][x2 = 1], and we obtain an A-cost
of 2 for P ′. Since the quantifier of x2 is min, we set the
upper bound ub in alpha-beta pruning (Algorithm 1) to 2.
By observing the labeling tree in Figure 1, we can see the
search now aims to find whether there exists better, i.e. smaller,
A-costs for the problem. Suppose the search explores sub-
problem P ′′ = P[x1 = 1][x2 = 2]. Figure 4 shows the

Fig. 4. Alpha-beta search with lexicographic ordering in Example 2

Fig. 5. Alpha-beta search with minimax adversarial heuristics in Example 2

alpha-beta search, by ordering values (from left to right) in
lexicographic ordering. Nodes marked with ’X’ are pruned
by alpha-beta search. We can see the right-most sub-tree is
pruned. Suppose now we order values according to minimax
adversarial heuristics. Figure 5 shows we can obtain a smaller
search tree by pruning more nodes in the alpha-beta search.
The reason is that variable x3 will first explore sub-problem
P ′′[x3 = 3] instead of sub-problem P ′′[x3 = 1]. Traversing
sub-problem P ′′[x3 = 3] earlier allows P ′′ to obtain a stronger
lower bound lb of 3 earlier. This causes an earlier backtrack.

B. Implementing the heuristic via approximations
We propose three approximations to implement the minimax

adversarial heuristic. All consider only parts of the problem by
examining variables and constraints related to the variable be-
ing assigned. We start by showing the basic heuristic HUnary,
which covers only one unary constraint, followed by the other
two: HBinary and HFullBinary. We write Ci for the unary
constraint on variable xi, Ci,j for the binary constraint on
variables xi and xj where i < j, Ci(u) for the cost returned
by the unary constraint when u is assigned to xi, and Ci,j(u, v)
for the cost returned by the binary constraint when u and v
are assigned to xi and xj respectively.
Definition 2: Given an MWCSP P and the next unassigned

variable xi. HUnary(P) is a function returning value v ∈ Di

for xi where ∀u ∈ Di, Ci(v) ≤ Ci(u) if Qi = min, and
Ci(v) ≥ Ci(u) if Qi = max.
Definition 3: Given an MWCSP P and the next unassigned

variable xi. We denote set Bi to be the set of binary constraints
constraining variable xi and all future variables xj , i.e. Bi =
{Ci,j ∈ C|j > i}. HBinary(P) is a function returning value
v ∈ Di for xi s.t. ∀u ∈ Di:

If Qi = min : Ci(v)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(v, w)})

≤ Ci(u)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(u,w)})

If Qi = max : Ci(v)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(v, w)})

≥ Ci(u)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(u,w)})

where Qjw∈Dj
{Ci,j(v, w)} is equal to minw∈Dj

Ci,j(v, w) if
Qj = min, and equal to maxw∈Dj

Ci,j(v, w) if Qj = max.
Similarly, HFullBinary(P) is a function returning value v ∈
Di for xi s.t. ∀u ∈ Di:

If Qi = min : Ci(v)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(v, w)⊕ Cj(w)})

≤ Ci(u)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(u,w)⊕ Cj(w)})

If Qi = max : Ci(v)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(v, w)⊕ Cj(w)})

≥ Ci(u)⊕
⊕

Ci,j∈Bi

(Qj
w∈Dj

{Ci,j(u,w)⊕ Cj(w)})

where Qjw∈Dj
{Ci,j(v, w) ⊕ Cj(w)} is equal to

minw∈Dj
{Ci,j(v, w) ⊕ Cj(w)} if Qj = min, and equal

to maxw∈Dj
{Ci,j(v, w)⊕ Cj(w)} if Qj = max.

Theorem 1: Given an MWCSP P and firstx(P) = xi. If
Ci is the only constraint constraining xi, then HUnary is
equivalent to minimax adversarial heuristic.
Theorem 2: Given an MWCSP P and firstx(P) = xi. We

denote Si to be the set of variables constraining with xi and
U [Si] to be the set of unary constraints on these variables,
i.e. U [Si] = {Cj |xj ∈ Si}. If the set of constraints Bi ∪
{Ci} (Bi ∪ {Ci} ∪ U [Si] resp.) is the only set of constraints
constraining xi and all variables in Si, HBinary (HFullBinary
resp.) is equivalent to minimax adversarial heuristic.
To prove Theorem 1 and Theorem 2, we begin by introduc-

ing Lemma 2.
Lemma 2: Given an MWCSP P . Suppose there exists a set

S of variables in P , such that each of these variables xj ∈ S is
being constrained by the respective unary constraint Cj only.
We let U [S] be the set of unary constraints covering variables
in S, and further let P ′ be a modified sub-problem of P by
removing all variables in the set S, including the associated
domains, the associated quantifiers, and the set of associated
constraints U [S]. Then,

A-cost(P) =
⊕

Cj∈U [S]

QjCj ⊕A-cost(P ′)

where QjCj is equal to minv∈Dj
Cj(v) if Qj = min, and

equal to maxv∈Dj
Cj(v) if Qj = max.

The proof follows from the definition of A-costs.
One direct consequence of Lemma 2 is that if there exists

a set of variables (after a series of assignments in branch and
bound) which are constrained by unary constraints only, we
can divide the A-cost of the problem P into two parts/sub-
problems:

⊕
Cj∈U [S] QjCj and A-cost(P ′). It is easy to

observe that computing the first part is easy and essentially
solves the ultra-weak solution for variables in S.

Proof: (Theorem 1) Let P ′ be a modified sub-problem
of P by removing variable xi, the associated domain Di, the
associated quantifier Qi, and all constraints associated with
xi. Suppose variable xi is covered by only constraint Ci. By
Lemma 2,

A-cost(P) = QiCi ⊕A-cost(P ′)

P ′ does not involve variable xi. Therefore,

∀u ∈ Di,A-cost(P[xi = u]) = Ci(u)⊕A-cost(P ′)

By taking minimum/maximum on values in Di,

min
v∈Di

A-cost(P[xi = v]) = min
v∈Di

{Ci(v)} ⊕A-cost(P ′), and

max
v∈Di

A-cost(P[xi = v]) =max
v∈Di

{Ci(v)} ⊕A-cost(P ′)

The above two equations show if we want to find a value v
minimizing/maximizing A-cost(P[xi = v]), it is equivalent to
finding the value v giving the minimum/maximum costs of Ci,
hence implementing HUnary. This shows we can implement
minimax adversarial heuristic by implementing HUnary.

Proof: (Theorem 2) The proof is similar to the proof
for Theorem 1, by reusing Lemma 2. We skip the proof for
HBinary, and show the proof for HFullBinary which is more
general. Let P ′ be a modified sub-problem of P by removing
all variables in the set Si ∪ {xi}. Similar to previous proof,
we also remove all the associated domains, all the associated
quantifiers, and all the associated constraints related to the set
Si∪{xi} of variables in P ′. To simplify our notations, we de-
note the expression Ci(u)⊕

⊕
Ci,j∈Bi

(Qjw∈Dj
{Ci,j(u,w)⊕

Cj(w)}) as E[i, u].
Suppose the set Si ∪ {xi} of variables covers by only the

set of constraints Bi ∪ {Ci} ∪ U [Si]. If we assign a value
u of xi to the problem P , the set of binary constraints Bi

will become unary. We can merge Bi and the set of unary
constraints U [Si] to give a new set of unary constraints U ′[Si].
The set of unary constraints U ′[Si] is constructed as follows.
For all unary constraints Cj ∈ U [Si], if there exists a binary
constraint Ci,j ∈ Bi, then for all values w in Dj , the merged
unary constraint C ′

j ∈ U ′[Si] will return Cj(w)⊕ Ci,j(u,w).
We can see after a value assignment xi = u on xi, there
are only unary constraints covering on the set of variables
Si ∪ {xi}. By using Lemma 2, ∀u ∈ Di,

A-cost(P[xi = u]) = Ci(u)⊕ {
⊕

C′
j∈U ′[Si]

QjC
′
j} ⊕A-cost(P ′)

We then replace the set of merged unary constraint U ′[Si]
into the set of unary constraints U [Si] and the set of binary
constraints Bi in the equation. This gives,

∀u ∈ Di,A-cost(P[xi = u]) = E[i, u]⊕A-cost(P ′)

Recall sub-problem P ′ does not involve the set of variables
Si ∪ {xi}. By taking minimum/maximum on values Di,

min
v∈Di

A-cost(P[xi = v]) = min
v∈Di

{E[i, v]} ⊕A-cost(P ′), and

max
v∈Di

A-cost(P[xi = v]) = max
v∈Di

{E[i, v]} ⊕A-cost(P ′)

The above two equations show if we want to find a value v
minimizing/maximizing A-cost(P[xi = v]), it is equivalent
to finding the value v giving the minimum/maximum costs
for E[i, v], hence implementing HFullBinary. By similar ar-
guments, we can prove the case of HBinary. This completes
the proof.
By observing the two theorems, it is natural for us to

ask whether applying the three heuristic variants on general
MWCSPs can achieve better performance and smaller search
space. We will test and show these heuristics are worthwhile in
the experimental section. At current stage, all three heuristic
variants consider unary and binary constraints only. Gener-
alizing these heuristics to high arity/global constraints is an
interesting future work. Note that our approach only consider
value ordering heuristic for a variable at a time. By considering
multiple variables at a time, there may exists cases where
many variables are constrained by unary constraints only. By
following Lemma 2, this could allows us to derive stronger
and more effective heuristics in the future.

IV. PERFORMANCE EVALUATION
In this section, we compare the effects of the three value

ordering heuristics: HUnary, HBinary, and HFullBinary. To
further evaluate the effects on using the three heuristics, we
also perform experiments on three heuristics: HUnary Rev,
HBinary Rev, HFullBinary Rev, which are the reverse of HU-
nary, HBinary, and HFullBinary respectively. All six heuristics
will be compared against the static lexicographic ordering
(Lex). Apart from running these heuristics using only alpha-
beta prunings in the branch and bound search, we also test our
heuristics on two consistencies: DC-NC[proj-NC*] and DC-
AC[proj-AC*] [7], which are used to increase prunings and
backtrackings in the search, by filtering infeasible values and
inferring backtrackings on top of alpha-beta prunings. We note
there are also other consistency notions introduced in previous
work [7]. However, as the results are similar to DC-NC[proj-
NC*] and DC-AC[proj-AC*], we skip reporting the details.
We generate 20 instances for each benchmark’s particular

parameter setting. Results for each benchmark are tabulated
with average time used (in sec.) and average number of tree
nodes encountered. We take average for solved instances only.
If there are any unsolved instances, we give the number
of solved instances beside the average time (superscript in
brackets). Winning entries are highlighted in bold. A symbol
‘-’ represents all 20 instances fail to run within a time limit
set differently for each benchmark problem. The experiment
is conducted on a Core2 Duo 2.8GHz with 3.2GB memory.

A. Randomly Generated Problems
We perform experiments on randomly generated MWCSPs.

These benchmarks are previously used by Lee, Mak, and
Yip [6]. The random MWCSP instances are generated with
parameters (n, d, p), where n is the number of variables, d
is the domain size for each variable, and p is the probability
for a binary constraint to occur between two variables. There
are no unary constraints which makes the instances harder,

and the costs for each binary constraint are generated uni-
formly in [0..30]. Quantifiers are generated randomly with half
probability for min (max resp.), and the number of quantifier
levels vary from instances to instances. Time limit is set to
900 seconds, and Table I shows the result.

B. Graph Coloring Games

We perform experiments on the graph coloring game in the
introduction section. The benchmark instances are collected
from Lee, Mak, and Yip [6]. The instances are generated with
parameters (v, c, d), where v is an even number of nodes in
the graph, c is the range of numbers allowed to place, and
d is the probability of an edge between two vertices. Player
1 (Player 2 resp.) is assigned to play the odd (even resp.)
numbered turns, and the node corresponding to each turn is
generated randomly. Time limit is set to 1800 seconds, and
Table II shows the results.

C. Generalized Radio Link Frequency Assignment Problem

We re-use the benchmark Generalized Radio Link Fre-
quency Assignment Problem (GRLFAP) instances by Lal-
louet, Lee, and Mak [7]. The problem consists of assigning
frequencies to a set of radio links located between pairs
of sites, with the goal of preventing interferences. However,
a certain set of links are placed in unsecured areas, and
terrorists/spies may hijack/control these links. We are not able
to re-adjust the frequencies for the other links immediately
to minimize the interferences on the functioning ones. We
want to find frequency assignments such that we can minimize
the degree of radio links affected for the worst possible case.
The instances are generated according to two small but hard
CELAR sub-instances [13], which are extracted from a large
instance CELAR6. All GRLFAP instances are generated with
parameters (i, n, d, r), where i is the index of the CELAR
sub-instances used (CELAR6-SUBi), n is an even number of
links, d is an even number of allowed frequencies, and r is
the ratio of links placed in unsecured areas, 0 ≤ r ≤ 1.
For each instance, we randomly extract a sequence of n
links from CELAR6-SUBi and fix a domain of d frequencies.
We randomly choose �(r × n + 1)/2� pairs of links to be
unsecured. If two links are restricted not to take frequencies
fi and fj with distance less than t, we measure the costs
of interference by using a binary constraint with violation
measure max(0, t− |fi − fj |). We set the time limit to 3600
seconds. Table III shows the results.

D. Results & Discussions

In all the three benchmarks, applying value ordering heuris-
tics have runtime improvement over the static lexicographic or-
dering. When the solver is maintaining consistencies, e.g. DC-
NC[proj-NC*]/DC-AC[proj-AC*], even the simplest heuristic
HUnary runs faster than applying lexicographic ordering. We
first discuss results when the solver is running alpha-beta
prunings only (i.e. no consistency enforcement), followed by
results when the solver enforces consistencies.

TABLE I
RANDOMLY GENERATED PROBLEM

Alpha-beta Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(12, 5, 0.4) 66.84 5,967,461 75.39 5,897,438 75.40 5,897,438 39.06 2,830,764 141.76 10,339,204 39.18 2,830,764 143.00 10,339,204
(12, 5, 0.6) 53.32 4,782,541 90.46 6,796,546 90.43 6,796,546 41.82 2,947,470 109.7319 7,515,682 42.02 2,947,470 110.6119 7,515,682
(12, 5, 0.8) 37.6519 2,795,500 61.6519 3,691,135 61.7619 3,691,135 30.9519 1,666,716 145.5119 8,166,657 31.3919 1,666,716 146.6619 8,166,657
(16, 5, 0.4) 510.462 26,269,025 - - - - 461.8710 20,304,664 - - 463.8310 20,304,664 - -
(16, 5, 0.6) 679.832 36,315,673 - - - - 620.3211 22,689,337 - - 627.5211 22,689,337 - -
(16, 5, 0.8) 738.343 33,096,934 - - - - 641.049 21,783,228 - - 646.409 21,783,228 - -
(20, 5, 0.4) - - - - - - - - - - - - - -
(20, 5, 0.6) - - - - - - - - - - - - - -
(20, 5, 0.8) - - - - - - - - - - - - - -

DC-NC[proj-NC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(12, 5, 0.4) 5.73 131,468 1.30 26,185 32.74 861,341 0.82 15,318 41.62 1,040,848 0.77 14,159 54.13 1,393,713
(12, 5, 0.6) 4.52 101,690 1.23 24,307 45.10 1,178,818 0.85 15,340 65.18 1,607,882 0.71 12,402 83.64 2,096,126
(12, 5, 0.8) 6.61 147,525 1.82 34,649 47.96 1,163,180 1.43 24,362 65.49 1,495,977 1.28 21,263 81.18 1,875,538
(16, 5, 0.4) 325.8219 4,617,612 30.94 380,305 252.522 3,242,046 25.59 290,328 583.412 7,311,226 20.99 232,784 346.201 3,860,844
(16, 5, 0.6) 454.3616 6,157,070 34.94 426,025 889.401 11,811,844 26.71 296,878 - - 20.71 226,329 - -
(16, 5, 0.8) 428.3818 5,681,283 39.19 470,231 - - 31.24 339,084 - - 26.13 277,702 - -
(20, 5, 0.4) - - 464.5914 3,631,220 - - 310.8216 2,339,663 - - 240.1016 1,752,855 - -
(20, 5, 0.6) - - 663.1011 5,081,140 - - 363.7513 2,599,439 - - 339.7214 2,379,827 - -
(20, 5, 0.8) - - 544.289 4,113,674 - - 416.8016 2,903,194 - - 344.9416 2,361,805 - -

DC-AC[proj-AC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(12, 5, 0.4) 3.03 30,165 0.46 3,075 17.55 244,219 0.38 2,431 18.79 254,453 0.35 2,072 27.76 391,213
(12, 5, 0.6) 2.96 26,093 0.68 4,047 30.00 413,976 0.66 3,691 33.76 434,281 0.46 2,345 51.13 688,959
(12, 5, 0.8) 4.43 37,663 0.99 4,832 34.58 407,730 0.98 4,400 39.96 453,413 0.83 3,541 51.98 612,295
(16, 5, 0.4) 161.42 1,047,900 11.02 45,766 434.014 3,828,107 10.03 39,879 96.412 548,633 7.11 26,312 106.152 654,593
(16, 5, 0.6) 319.80 1,816,642 17.42 63,918 670.462 4,138,239 17.55 61,632 560.041 3,124,293 14.55 48,842 639.421 4,254,183
(16, 5, 0.8) 281.85 1,454,321 20.47 68,347 - - 21.04 67,158 - - 15.79 47,765 - -
(20, 5, 0.4) - - 234.4618 665,502 - - 201.5218 572,188 - - 125.6218 338,949 - -
(20, 5, 0.6) - - 296.4116 720,776 - - 306.22 704,623 - - 227.17 495,816 - -
(20, 5, 0.8) - - 426.3318 965,016 - - 430.5518 918,563 - - 326.23 661,739 - -

TABLE II
GRAPH COLORING GAME

Alpha-beta Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(14, 4, 0.4) 19.50 1,572,978 22.72 1,572,978 22.82 1,572,978 8.08 500,744 108.26 6,910,142 8.11 500,744 109.15 6,910,142
(14, 4, 0.6) 23.81 1,730,473 29.25 1,730,473 29.32 1,730,473 8.21 428,177 299.31 16,328,103 8.28 428,177 301.15 16,328,103
(24, 4, 0.4) - - - - - - - - - - - - - -
(24, 5, 0.6) - - - - - - - - - - - - - -
(22, 6, 0.4) - - - - - - - - - - - - - -
(32, 4, 0.4) - - - - - - - - - - - - - -

DC-NC[proj-NC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(14, 4, 0.4) 6.53 122,266 0.65 11,053 57.50 1,145,837 0.31 4,922 117.72 2,227,353 0.21 3,346 129.41 2,436,701
(14, 4, 0.6) 10.08 185,111 0.85 13,957 104.00 2,025,421 0.33 4,991 261.54 4,825,831 0.29 4,348 243.36 4,516,025
(24, 4, 0.4) - - 696.27 3,934,005 - - 118.24 643,280 - - 77.97 421,340 - -
(24, 5, 0.6) - - 1,322.951 7,225,728 - - 209.88 1,063,488 - - 206.64 1,045,374 - -
(22, 6, 0.4) - - 408.731 2,527,346 - - 694.7717 4,164,208 - - 655.6219 3,930,443 - -
(32, 4, 0.4) - - - - - - 1,229.562 3,807,544 - - 1,103.534 3,410,632 - -

DC-AC[proj-AC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(14, 4, 0.4) 4.30 37,252 0.62 4,230 31.04 335,624 0.35 2,290 50.19 520,860 0.23 1,500 64.37 651,782
(14, 4, 0.6) 7.49 59,359 0.94 5,602 59.23 582,871 0.42 2,350 108.84 1,012,054 0.35 1,944 129.50 1,191,190
(24, 4, 0.4) - - 626.15 1,485,890 - - 128.95 290,397 - - 84.66 189,681 - -
(24, 5, 0.6) - - 1,509.692 2,979,983 - - 263.27 469,303 - - 245.79 437,889 - -
(22, 6, 0.4) - - 338.841 756,394 - - 762.2417 1,722,831 - - 716.3119 1,642,269 - -
(32, 4, 0.4) - - - - - - 1,301.112 1,666,841 - - 1,199.464 1,506,866 - -

TABLE III
GENERALIZED RADIO LINK FREQUENCY ASSIGNMENT PROBLEM

Alpha-beta Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(1, 24, 4, 0.2) - - - - - - - - - - - - - -
(0, 24, 4, 0.4) - - - - - - - - - - - - - -
(1, 22, 6, 0.2) - - - - - - - - - - - - - -
(0, 22, 6, 0.4) - - - - - - - - - - - - - -

DC-NC[proj-NC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(1, 24, 4, 0.2) 79.42 442,362 77.92 421,818 105.63 664,543 81.55 424,536 108.03 641,524 80.22 416,453 120.81 738,909
(0, 24, 4, 0.4) 136.06 828,286 72.50 426,532 704.26 4,887,260 73.35 420,142 731.51 4,968,383 32.17 180,044 821.89 5,551,107
(1, 22, 6, 0.2) 577.32 3,580,885 546.69 3,292,629 731.60 4,971,870 585.65 3,303,538 787.67 5,081,591 594.15 3,319,014 841.33 5,452,801
(0, 22, 6, 0.4) 1,101.7915 7,862,914 571.2419 3,757,999 1,058.494 9,531,187 580.2819 3,641,583 1,002.934 8,855,429 260.53 1,583,673 248.973 1,995,544

DC-AC[proj-AC*] Lex HUnary HUnary Rev HBinary HBinary Rev HFullBinary HFullBinary Rev
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
(1, 24, 4, 0.2) 49.87 74,182 48.96 68,381 67.64 133,192 49.34 67,766 70.64 138,577 47.38 64,413 75.67 156,642
(0, 24, 4, 0.4) 99.92 295,743 54.49 137,407 673.12 2,605,763 61.63 159,094 651.44 2,516,190 38.61 91,439 836.59 3,165,730
(1, 22, 6, 0.2) 309.21 352,439 304.87 316,659 394.91 582,929 305.54 311,648 405.28 594,559 306.15 311,994 424.82 680,745
(0, 22, 6, 0.4) 1,281.30 4,448,644 576.36 1,506,982 975.495 4,463,350 742.64 2,058,202 1,211.096 5,492,821 410.46 972,607 1,121.035 5,116,597

Alpha-beta prunings only For randomly generated problems
and the graph coloring games, applying HUnary and its reverse
on alpha-beta prunings gives the same number of backtracks
and similar runtimes. In addition, applying HBinary (Rev)
and HFullBinary (Rev) on alpha-beta prunings has the same
number of backtracks. However, HBinary (Rev) runs slightly
faster than HFullBinary (Rev). The reason is that there are
no unary constraints on these two problems. For HUnary and
HUnary Rev, both of them cannot distinguish which value
of a variable is better. In this case, we degenerate them into
the same ordering (in an arbitrary manner). For HFullBinary
(Rev), it is degenerated into HBinary (Rev) according to
definitions. However, HFullBinary (Rev) requires computing
costs from more constraints than HBinary (Rev). Therefore, it
runs slightly slower than HBinary (Rev). Overall, HBinary on
alpha-beta prunings runs the fastest and maintains the smallest
number of backtracks on these two benchmarks.
In fact, we can also observe applying the reverse of HBinary

and HFullBinary, which can be viewed as approximating the
reverse of the minimax adversarial heuristic, both have the
worst number of backtracks. This suggest devising heuristics
to approximate minimax adversarial heuristic is worthwhile.
One point to note is that when maintaining the two consistency
notions, we are required to use projection operations [7], which
is an equivalence-preserving transformation by transferring
costs from binary constraints to unary constraints. Even when
unary constraints do not exist in the problem, they may be
created when enforcing consistencies. The degeneration of
HUnary/HFullBinary (Rev) is unlikely to appear once we
enforce consistencies.
With Consistencies For all of the three benchmarks, even
applying the simplest heuristic HUnary gives runtime and
backtrack improvements.
For randomly generated problems and the graph coloring

games, applying HFullBinary (HBinary resp.) has a smaller
number of backtracks than applying HBinary (HUnary resp.).
For the runtime, applying HFullBinary (HBinary resp.) on both
DC-NC[proj-NC*] and DC-AC[proj-AC*] runs faster than
applying HBinary (HUnary resp.). The only exception is the
two parameters (16, 5, 0.6) and (16, 5, 0.8) in Table I, where
HBinary on DC-AC[proj-AC*] runs slower than HUnary. In
addition, we can observe applying the reverse heuristics is
always worse than their counterparts.
One possible explanation is that by using a heuristic con-

sidering more constraints (e.g. HFullBinary), the heuristic is
more accurate towards the minimax adversarial heuristic. This
will allow bounds to tighten quicker and gives more prunings.
However, computing these heuristics requires higher compu-
tational resources, and therefore, the runtime improvement for
these heuristics may not always be worthwhile. On the other
hand, the three reverse heuristics can be viewed as functions
approximating the reverse of the minimax adversarial heuristic.
Applying the reverse of the minimax adversarial heuristic
should tighten bounds slower and gives less prunings. There-
fore, all reverse heuristics runs slower (with a larger search
space) comparing to their counterparts.

For GRLFAP, the number of backtracks is the smallest when
applying HFullBinary (exception for (1, 22, 6, 0.2)) and HFull-
Binary has shown best runtime in many cases. However, the
results for other heuristics, especially for HBinary, are different
from the other two benchmarks. Applying HBinary on DC-
NC[proj-NC*]/DC-AC[proj-AC*] does not always achieve a
smaller number of backtracks and run faster than HUnary.
We also observe for benchmarks when r = 0.2, applying the
three heuristics: HUnary, HBinary, and HFullBinary can only
slightly improve the runtime and backtracks.
This suggests when two heuristics are both approximating

the costs for minimax adversarial heuristic, a heuristic consid-
ering more constraints does not necessarily work better than
the other one. It is problem/benchmark dependent.

V. CONCLUDING REMARKS
In this paper, we study the effects of minimax adversarial

heuristic, which orders values of variables according to the
semantic of quantifiers, in solving ultra-weak solutions for
MWCSPs. The heuristic selects values by viewing MWCSPs
as a two-player zero-sum game based on minimax heuristics
from adversarial search. To implement the heuristic for effi-
cient solving in practice, we propose and define three heuristic
variants: HUnary, HBinary, and HFullBinary. We further give
sufficient conditions to show when these heuristics will be
equivalent to minimax adversarial heuristic. Experiments on
three benchmarks comparing the effects of the three heuristic
variants with different consistencies are shown. Other future
work on MWCSPs includes: consistencies for (high arity)
soft global constraints [14], algorithms for tackling stronger
solution concepts, and distributed versions of MWCSPs.

REFERENCES
[1] J. V. Neumann and O. Morgenstern, Theory of Games and Economic

Behavior. Princeton University Press, 1944.
[2] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic

Game Theory. Cambridge University Press, 2007.
[3] L. V. Allis, “Searching for solutions in games and artificial intelligence,”

Ph.D. dissertation, University of Limburg, 1994.
[4] L. Bordeaux, M. Cadoli, and T. Mancini, “CSP properties for quantified

constraints: Definitions and complexity,” in AAAI’05, 2005, pp. 360–365.
[5] L. Bordeaux and E. Monfroy, “Beyond NP: Arc-consistency for quan-

tified constraints,” in CP’02, 2002, pp. 371–386.
[6] J. H. M. Lee, T. W. K. Mak, and J. Yip, “Weighted constraint satisfaction

problems with min-max quantifiers,” in ICTAI ’11, 2011, pp. 769–776.
[7] A. Lallouet, J. H. M. Lee, and T. W. K. Mak, “Consistencies for ultra-

weak solutions in minimax weighted csps using the duality principle,”
in CP’12 (to appear), 2012.

[8] J. Larrosa and T. Schiex, “Solving weighted CSP by maintaining arc
consistency,” Artificial Intelligence, vol. 159, no. 1-2, pp. 1–26, 2004.

[9] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[10] J. Larrosa and T. Schiex, “In the quest of the best form of local
consistency for weighted CSP,” in IJCAI’03, 2003, pp. 239–244.

[11] S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa, “Existential arc
consistency: Getting closer to full arc consistency in weighted CSPs,”
in IJCAI’05, 2005, pp. 84–89.

[12] D. Stynes and K. N. Brown, “Value ordering for quantified CSPs,”
Constraints, vol. 14, no. 1, pp. 16–37, 2009.

[13] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warners, “Radio
link frequency assignment,” CONSTRAINTS, vol. 4, pp. 79–89, 1999.

[14] J. H. M. Lee and K. L. Leung, “Consistency techniques for flow-based
projection-safe global cost functions in weighted constraint satisfaction,”
JAIR, vol. 43, pp. 257–292, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006800690063006800200073006100740069007300660079002000740068006500200072006500710075006900720065006d0065006e0074007300200069006d0070006f007300650064002000620079002000740068006500200049004500450045005f0049004300540041004900200063006f006e0066006500720065006e00630065>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

