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Ultra-Weak Solutions and Consistency Enforcement in
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Abstract The task at hand is that of a soft constraint problem with adversarial con-
ditions. By amalgamating the weighted and quantified constraint satisfaction frame-
works, a Minimax Weighted Constraint Satisfaction Problem (formerly Quantified
Weighted Constraint Satisfaction Problem) consists of a set of finite domain vari-
ables, a set of soft constraints, and a min or max quantifier associated with each of
these variables. We formally define the framework, suggest three solution concepts,
and propose a complete solver based on alpha-beta pruning techniques. We discuss in
depth our novel definitions and implementations of node, arc and full directional arc
consistency notions to help reduce search space on top of the basic tree search with
alpha-beta pruning for solving ultra-weak solutions. In particular, these consistencies
approximate the lower and upper bounds of the cost of a problem by exploiting the
semantics of the quantifiers and reusing techniques from both Weighted and Quan-
tified Constraint Satisfaction Problems. Lower bound computation employs standard
estimation of costs in the sub-problems used in alpha-beta search. In estimating upper
bounds, we propose two approaches based on the Duality Principle: duality of quanti-
fiers and duality of constraints. The first duality amounts to changing quantifiers from
min to max, while the second duality re-uses the lower bound approximation func-
tions on dual constraints to generate upper bounds. Experiments on three benchmarks
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comparing basic alpha-beta pruning and the six consistencies from the two dualities
are performed to confirm the feasibility and efficiency of our proposal.

Keywords constraint optimization, soft constraint satisfaction, minimax game
search, consistency algorithms

1 Introduction

The task at hand is that of a constraint optimization problem with adversaries con-
trolling parts of the variables. As an example, we begin with a generalized version of
the Radio Link Frequency Assignment Problem (RLFAP) [8] consisting of assigning
frequencies to a set of radio links located between pairs of sites, with the goal of pre-
venting interferences. The problem has two types of constraints. One type prevents
radio links that are close together from interfering with one another, by restricting
the links not to take frequencies with absolute differences smaller than a threshold.
In practice, the threshold is measured depending on the physical environment, and
is often overestimated. The second type of constraints are technological constraints,
where each constraint ensures the distance between frequencies of a radio link from
site A to B and its reverse radio link from site B to A must be equal to a constant.
If the problem is unsatisfiable, one approach is to find assignments violating the first
type of constraints as little as possible. Suppose now a certain set of links are placed
in unsecured areas, and adversaries (e.g. terrorists/spies) may hijack/control these
links. One interesting question for this type of scenarios is to find frequency assign-
ments such that we can minimize the degree of radio links affected for the worst
possible case (i.e. finding the best-worst case). In practice, we may not even be able
to immediately respond by re-adjusting the frequency assignments in order to mini-
mize the interferences and planning how to defend is also important. The prime goal
of our work is to understand how well we can defend against the worst adversaries
for planning purposes.

The example is optimization in nature, and the adversaries originate from the
uncontrollable frequencies being assigned on the links in unsecured areas. The ques-
tion can be modeled as minimizing the interferences for all possible combinations
of frequency adjustments the adversaries can control. One way to solve this problem
is by tackling many COPs [2]/Weighted CSPs [17], where each of them minimizes
the interferences conditioned on a specific combination of frequency adjustments
controlled by the adversaries. Another way is to model the problem as a Quantified
CSP [6] by finding whether there exists combinations of frequency adjustments for
us for all frequency placements by the adversaries such that the costs of interferences
is less than a cost k. To avoid solving multiple sub-problems, Minimax Weighted
Constraint Satisfaction Problems (MWCSPs) (previously Quantified Weighted Con-
straint Satisfaction Problems) [21,15] are proposed to tackle such problems, com-
bining quantifier structures from Quantified CSPs to model the adversaries and soft
constraints from Weighted CSPs to model costs information.

The generalized RLFAP described above can be viewed as a zero-sum two-player
game played in two turns. When tackling such game problems, more specifically
two-person zero-sum games with perfect information [33,25], games can be solved
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at different levels. Allis [1,14] proposes three solving levels for games: ultra-weakly
solved, weakly solved, and strongly solved. Ultra-weakly solved means the game-
theoretic value of the initial position has been determined, which means we can de-
termine the outcome of the scenario when both players are playing perfectly (i.e.
best-worst case). Weakly solved means a strategy, noted as winning strategy [5] in
Quantified CSPs, has been determined for the initial position to achieve the game-
theoretic value against any opposition. Strongly solved is used for a game for which
such a strategy has been determined for all legal positions. Once a game is solved at a
stronger level, the game is automatically solved at weaker ones. Finding solutions at
stronger levels, however, implies substantially higher computation requirements. In
particular, in terms of space, ultra-weak solutions are linear in size, while the other
two stronger ones are exponential. In bi-level programs, there are cases in which we
can assume there is a unique optimum for the follower or we are concerned with only
the moves for the leader [12]. Finding ultra-weak solutions for these cases are suffi-
cient. In the generalized RLFAP example, we can see that operators setting the fre-
quencies are classified as leaders and adversaries controlling the unsecured links are
classified as followers. In adversarial game playing, many game search algorithms,
e.g. minimax and alpha-beta [30], compute strategies assuming optimal plays to re-
duce computation costs. In fact, even determining just the ultra-weak solution in an
offline manner is also an important and interesting line of research, e.g. a recent
breakthrough on checkers [31].

We define three solution concepts: ultra-weak solutions, weak solutions, and strong
solutions, corresponding to each of the three solving levels for Minimax Weighted
CSPs, and our work focus on finding ultra-weak solutions. We describe how to adopt
alpha-beta pruning to tackle the problem, and suggest two sufficient pruning con-
ditions to achieve prunings and backtrackings. We also introduce novel consistency
notions and algorithms for solving ultra-weak solutions, by approximating the lower
and upper bounds of the cost of the problem. Lower bound computation employs stan-
dard estimation of costs in the sub-problems used in alpha-beta search. In estimating
upper bounds, we adopt the Principle of Duality [24,35] in (integer) linear program-
ming, which suggests to convert an original (primal) problem to its dual form and
tackle the problem using both forms. We consider two dualities: duality of quantifiers
and duality of constraints. The first approach allows us to formulate upper bound ap-
proximation functions by changing quantifiers in the lower bound functions from min
to max, while the second approach re-uses the lower bound approximation functions
on dual constraints to generate upper bounds. Algorithms and examples to explain
these notions are given throughout the paper. Discussions on whether our proposed
techniques are applicable to the computation of the two stronger solutions are also
given. Experimental evaluations on three benchmarks are performed to compare six
consistencies defined using the two dualities to confirm the feasibility and efficiency
of our proposal.

This journal paper combines and improves two of our previous work: Lee, Mak,
and Yip [21] and Lallouet, Lee, and Mak [15]. We have added and/or improved the
following items:

1. Examples to illustrate the concepts of our consistencies,
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2. Algorithms and pseudo-codes to enforce the proposed consistency notions,
3. Fuller and corrected proofs for our proposed lemmas and theorems,
4. Theoretical runtime results on our consistency algorithms, and
5. Extended experimental evaluations.

The rest of the paper is organized as follows. Section 2 gives the background
definitions for Weighted CSPs and Quantified CSPs. We then define our framework
Minimax Weighted CSPs in Section 3, followed by giving descriptions of the basic
alpha-beta search. Based on the alpha-beta search, Section 4 proposes two sufficient
pruning conditions to achieve prunings and backtrackings. Section 5 gives consis-
tency notions and algorithms for solving Minimax Weighted CSPs, followed by per-
formance evaluations on three benchmarks in Section 6. In Section 7, we conclude
our work.

2 Background

We first give basic definitions for Weighted CSPs and Quantified CSPs.
A Weighted Constraint Satisfaction Problem [17] (WCSP) is a tuple (X ,D, C,k),

whereX = {x1, . . . , xn} is a finite set of variables andD = {D1, . . . , Dn} is a set of
finite domains of possible values. We denote xi = vi an assignment assigning value
vi ∈ Di to variable xi, and the set of assignments l = {x1 = v1, x2 = v2, . . . , xn =
vn} a complete assignment on variables in X , where vi is the value assigned to xi.
A partial assignment l[S] is a projection of l onto variables in S ⊆ X . C is a finite
set of (soft) constraints (also called cost functions), each CS of which represents a
function mapping tuples corresponding to assignments on a subset of variables S,
to a cost valuation structure V (k) = ([0...k],⊕,≤). The structure V (k) contains
a set of integers [0...k] with standard integer ordering ≤. Addition ⊕ is defined by
a⊕ b = min(k, a+ b). For any integer a and b where a ≥ b, subtraction 	 is defined
by a	b = a−b if a 6= k, and a	b = k if a = k. Note that for the rest of the paper, +
and − refer to standard addition and subtraction while ⊕ and 	 refer to the addition
and subtraction for the valuation structure. Without loss of generality, we assume the
existence of C∅ denoting the lower bound of the minimum cost of the problem. If
it is not defined, we assume C∅ = 0. The cost of a complete assignment l in X is
defined as:

cost(l) = C∅ ⊕
⊕
Cs∈C

Cs(l[S])

A complete assignment l on X is feasible if cost(l) < k, and is a solution of a WCSP
if l has the minimum cost among all tuples.

A Quantified Constraint Satisfaction Problem [6] (QCSP) P is a tuple
(X ,D, C,Q), where X = (x1, . . . , xn) is an ordered finite sequence of variables,
D = (D1, . . . , Dn) is an ordered sequence of finite domains, C = {C1, . . . , Ce} is a
finite set of constraints, andQ = (Q1, . . . , Qn) is a quantifier sequence in which each
Qi is either ∃ (existential, ‘there exists’) or ∀ (universal, ‘for all’) associated with xi.
A constraint Ck ∈ C consists of a sequence Xk = (xk1

, . . . , xkr
) of r > 0 variables
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s.t. Xk is a subsequence of X . Ck has an associated set A[Ck] ⊆ Dk1 × . . .×Dkr of
tuples which specify allowed combinations of values for the variables in Xk. Let
firstx(P) be a function returning the first unassigned variable in the variable se-
quence. If there are no such variables, it returns ⊥. The semantics of a QCSP P
is defined recursively as follows:

(1) In case firstx(P) =⊥, if all constraints Ck ∈ C are satisfied, P is satisfiable; and
if any constraint fails, P is unsatisfiable.

(2) Otherwise, let firstx(P) = xi. If Qi = ∃ then P is satisfiable iff there exists
a value a ∈ Di such that the simplified problem P with a assigned to xi is
satisfiable. If Qi = ∀ then P is satisfiable iff for all values a ∈ Di the simplified
problem P with a assigned to xi is satisfiable.

3 Minimax Weighted Constraint Satisfaction Problems

In this section, we give definitions and semantics of MWCSPs. We then further de-
scribe the alpha-beta search for MWCSPs.

3.1 Definitions and Semantics

Standard Weighted CSPs are minimization in nature. We aim at optimizing prob-
lems with adversarial conditions by modeling adversaries using max quantifiers. A
Minimax Weighted Constraint Satisfaction Problem (MWCSP) [21,15] P is a tuple
(X ,D, C,Q, k), where X = (x1, . . . , xn) is defined as an ordered sequence of vari-
ables, D = (D1, . . . , Dn) is an ordered sequence of finite domains, C is a set of soft
constraints, Q = (Q1, . . . , Qn) is a quantifier sequence where Qi is either max or
min associated with xi, and k is the global upper bound. We re-use the definition
of assignments, partial and complete assignments, (soft) constraints, and costs of a
complete assignment for Weighted CSPs.

In an MWCSP, ordering of variables is important. Without loss of generality,
we assume variables are ordered by their indices. We define a variable with min
(max resp.) quantifier to be a minimization variable (maximization variable resp.).
Let P[xi1 = ai1 ][xi2 = ai2 ] . . . [xim = aim ] be the sub-problem obtained from
P by assigning value ai1 to variable xii , assigning value ai2 to variable xi2 ,. . . ,
assigning value aim to variable xim . We re-use the function firstx from the definition
of Quantified CSPs. The aggregated costs of an MWCSP P , A-cost(P), is defined
recursively as follows:

A-cost(P) =


cost(l), if firstx(P) = ⊥
max(Mi), if firstx(P) = xi and Qi = max

min(Mi), if firstx(P) = xi and Qi = min

where l is the complete assignment of the completely assigned problem P (i.e.
firstx(P) = ⊥), and Mi = {A-cost(P[xi = v])|v ∈ Di}. An MWCSP P is sat-
isfiable iff A-cost(P) < k. We define a block of variables in an MWCSP P to be
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Fig. 1 Constraints for Example 1
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Fig. 2 Labeling Tree for Example 1

a maximal subsequence of variables in X which has the same quantifiers. Changing
the variable ordering within the same block of variables does not change the A-cost
of an MWCSP.

We now define three solution concepts [15] for MWCSPs based on the definition
of A-costs. An ultra-weak solution of an MWCSP P is a complete assignment {x1 =
v1, . . . , xn = vn} s.t. A-cost(P) = A-cost(P[x1 = v1] . . . [xi = vi]),∀1 ≤ i ≤
n. Finding an ultra-weak solution corresponds to finding one scenario when both
players are playing perfectly. To capture weak (strong resp.) solutions, we re-use the
concept of winning strategies [5]. Without loss of generality, we assume the max
player is the adversary. A weak solution (strong solution resp.) is a set of functions
F , where each function fi ∈ F corresponds to a min variable xi. Let Gi be the set
of domains of max variables (all variables resp.) preceding xi, i.e. Gi = {Dj ∈
D|Qj = max∧j < i} (Gi = {Dj ∈ D|j < i} resp.). We define fi : ×Dj∈GiDj 7→
Di. If Gi is an empty set, then fi is a constant function returning values from Di. Let
P ′ be a sub-problem of an MWCSPP , where the next unassigned variable xi is a min
variable, and l be the set of assigned values for max variables (all variables resp.) xj
where j < i. For weak solutions, we can further assume the assigned values of min
variables xk where k < i inP ′ follow fk. We require all fi to satisfy: A-cost(P ′[xi =
fi(l)]) = A-cost(P ′). In other words, we require fi(l) to return the best value for the
min player, and the set of functions F will then be a best strategy for the min player.
This paper focuses on tackling ultra-weak solutions.

Example 1 We use the generalized Radio Link Frequency Assignment Problem in-
troduced in the previous section as an example to illustrate our concepts throughout
the paper. The problem consists of four links l1, l2, l3, and l4. Two of the links l1 and
l2 connect sitesA andB, and the other two links l3 and l4 connect sitesB andC. Link
l2 (l4 resp.) is the reverse link for l1 (l3 resp.). There is a variable xi in the MWCSP P
for each link li, which is used to represent the chosen frequency for link li. Site C is
not secure and links l3 and l4 are subject to control. We need to pay costs if two links
interfere with each other. Therefore, we want to find frequency assignments for l1 and
l2 such that we can minimize the total costs for interference in the worst case. We set
the quantifier sequence in P as (Q1 = min, Q2 = min, Q3 = max, Q4 = max). For
simplicity, we assume links l1 and l3 have two frequency choices, and the other two
links have three. We measure the costs for interference only for links l1 and l3, and
links l2 and l4. These costs will be modeled by constraints on variables x1 and x3,
and also on variables x2 and x4. In addition, we maintain the technological constraint
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between links l1 and l2, which will be modeled by a binary constraint on variables x1
and x2. We can also add unary constraints to the problem to indicate known prefer-
ences on the link frequencies. In this example, we add one such constraint to x4. Note
that the example is simplified for illustrative purposes. Figure 1 indicates there is one
unary constraint C4 and three binary constraints C1,2, C1,3, and C2,4. For the unary
constraint, non-zero unary costs are depicted inside a circle and domain values are
placed above the circle. For binary constraints, non-zero binary costs are depicted as
labels on edges connecting the corresponding pair of values. Only non-zero costs are
shown. We set the global upper bound k to be 11. By following the partial labeling
tree in Figure 2, we can easily infer the A-cost of the subproblem P ′ = P[x1 = a]
is 7, and {x1 = a, x2 = a, x3 = b, x4 = a} is one of the ultra-weak solutions for the
sub-problem P ′.

From the problem definitions of Minimax Weighted CSPs, we can observe that
both Weighted CSPs and Quantified CSPs are special cases of Minimax Weighted
CSPs.

Lemma 1 A Weighted CSP [17] P can be transformed by polynomial-time (Karp)
reduction [3] to a Minimax Weighted CSP P ′. Finding the A-cost of P ′ is equivalent
to finding the minimum cost of P [21].

By constructing a Minimax Weighted CSP P ′ with the same set of variables, do-
mains, and soft constraints from the Weighted CSP P and setting all quantifiers of P ′
to min quantifiers, it is easy to observe that finding the A-cost of P ′ essentially finds
the minimum cost of P .

Lemma 2 A Quantified CSP [6] P can be transformed by polynomial-time (Karp)
reduction [3] to a Minimax Weighted CSP P ′. Finding the A-cost of P ′ is equivalent
to determining the satisfiability of P [21].

We construct a Minimax Weighted CSP P ′ which holds the same set of variables and
domains as in the Quantified CSP P . For the quantifiers, if a variable in P has an ∃
quantifier (a ∀ quantifier resp.) , the same variable in P ′ will have a min (max resp.)
quantifier. The final step in the transformation involves transforming constraints in P
to soft constraints in P ′. For every constraint C in P , we construct a soft constraint
C ′ for P ′ on the same set of variables, where C ′ returns a cost of 0 (a cost of k resp.)
on the same set of assignments if C is satisfiable (unsatisfiable resp.). We set k to any
positive integer larger than 0. It is not hard to check if the A-cost of P ′ is 0, then P
is satisfiable; otherwise, P ′ is unsatisfiable.

Corollary 1 Finding the A-costs and ultra-weak solutions of Minimax Weighted CSPs
are PSPACE-hard [21].

The corollary follows from the fact that Quantified CSPs are PSPACE-complete [6].
Computing ultra-weak solutions for Minimax Weighted CSPs essentially computes
the A-costs, and finding the A-costs of Minimax Weighted CSPs are PSPACE-hard
(by Lemma 2). Therefore, finding ultra-weak solutions are also PSPACE-hard. A
special case is that if all the quantifiers of an MWCSP are min quantifiers, finding an
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ultra-weak solution is equivalent to finding a complete assignment l with the mini-
mum costs (i.e. argminl cost(l)). The problem reduces to a Weighted CSP, which is
NP-hard.

It is worth to note that Minimax Weighted CSPs are also sub-classes of the multi-
operator framework [26] and can be classified also as a kind of sequential decision
making problems [27]. Since our work directly defined based on Weighted CSPs and
Quantified CSPs, we naturally focus on combing and re-use ideas and techniques
from these two frameworks.

3.2 Alpha-beta Prunings in Branch & Bound

Minimax Weighted CSPs can be solved by applying alpha-beta pruning in branch and
bound search [21,15], by treating max and min variables as max and min players
respectively. Note that alpha-beta pruning is not new and has long been introduced
as pruning strategies in the game solving community. Admissible heuristics and/or
monotonic function have also been proposed to incorporate with alpha-beta prun-
ings [32,28]. Our work can be seen as re-applying these classical principles and ideas
from the game solving community to MWCSPs, which is a constraint-based frame-
work. One main theme of our work is to show how these ideas could be combined
with state-of-the-art constraint propagation techniques from both Weighted CSPs and
Quantified CSPs.

Alpha-beta pruning utilizes two bounds, α and β, for storing the current best
costs for max and min players. We rename α and β as lower lb and upper ub bounds
to fit with the common notations for bounds in constraint and integer programming.
Figure 3 shows the alpha-beta search for our Minimax Weighted CSP solver. Function
local consistency at line 4 (enclosed in the grey box) is used to invoke routines
for enforcing local consistencies. Since we will introduce local consistencies and their
enforcing algorithms in later sections, we now skip the explanation for this function.
At current stage, we assume the function local consistency is empty and only
returns a constant return value NO BTK. In this case, we can further ignore line 5
since the if-condition will always avoid executing the return statement.

The alpha-beta algorithm starts by initializing lb (ub resp.) to -1 (k resp.), and
these two bounds will be maintained during assignments. Therefore, the search starts
with alpha beta(P,−1, k). Line 2 is the base case in which all variables are
bounded. In this case, alpha-beta pruning will invoke the routine cost, which returns
the cost of the current complete assignment. Lines 6 to 12 give the main routine of the
traditional alpha-beta pruning algorithm. We only explain the cost for the min quan-
tifier, since that of max is similar. The for loop evaluates all sub-problems P[xi = v]
by recursively invoking the alpha-beta algorithm. Since the goal is to find a mini-
mum value, the upper bound is updated. When the upper bound is less than the lower
bound (line 11), it triggers the short-cut to break out of the remaining search since
every value returned by subsequent calls will be dominated by the current bounds.
The function alpha beta ends by returning the upper bound for the min quantifier
(line 12).



Ultra-Weak Solutions and Consistency Enforcement in MWCSPs 9

1 function alpha_beta(P,lb,ub):
2 if firstx(P) == ⊥: return cost(P)
3 i = firstx(P)

4 state = local consistency() ∗

5 if state != NO_BTK: return (state == UB_BTK)?ub:lb
6 for v in Di:
7 if Qi == min:
8 ub = min(ub, alpha_beta(P[Xi=v],lb,ub))
9 else:

10 lb = max(lb, alpha_beta(P[Xi=v],lb,ub))
11 if ub <= lb: break
12 return (Qi == min)?ub:lb

Fig. 3 Alpha-beta for Minimax Weighted CSPs

Note that when line 4 and 5 are skipped, the algorithm is essentially an ordinary
alpha-beta pruning algorithm. Hence, we could argue the soundness of the algorithm
by re-using the argument for alpha-beta prunings. Recall lb and ub are used to store
the current best costs for max and min players. Suppose the alpha-beta algorithm is
now exploring a problem P with upper bound ub. We assume the first quantifier to
be min. The algorithm will only skip evaluating sub-problems P[xi = v] when the
condition at line 11 is triggered. For line 11 to be triggered, there must exists another
sub-problem P[xi = u], u 6= v which gives a better upper bound ub′ comparing to
the original upper bound ub, and ub′ is lower than or equal to lb. According to two-
player zero-sum game, this essentially means that the min player now has found a
strategy by playing xi = u to achieve a cost lower than or equal to lb, which is the
current best found costs for the max player. Therefore, the max player has no hope on
finding a cost larger than lb by following the current branch regardless on the costs of
the alpha-beta search on sub-problemsP[xi = v]. In other words, the max player will
tend to follow a previous searched branch leading to his/her current best cost lb and
alpha-beta will therefore prune all the sub-problems P[xi = v]. Similar reasonings
can be applied when the first quantifier is max.

Note that by utilizing the alpha-beta search in Figure 3, we cannot find all ultra-
weak solutions. Assume we have already found the first ultra-weak solution. Suppose
now the alpha-beta search encounters the second ultra-weak solution. It is not hard to
observe that Line 11 will immediately causing the solver to backtrack as the costs of
the second solution are equal to the costs of the found solution. If we want to gather
all ultra-weak solutions, we may need to relax the backtracking condition by modify
line 11 to change the inequality to a strict inequality (i.e. from ≤ to <).

4 Pruning and Backtracking Conditions

In traditional CSPs, we enforce different levels of consistency to prune infeasible do-
main values and hence reduce the search space. In Weighted CSPs, consistency algo-
rithms further take the costs of constraints into account. Various consistency notions
(e.g. NC*, AC* [17], FDAC*, EDAC*, OSAC, and VAC [9]) have been proposed
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and proven to be useful in improving solver performance. Such techniques, however,
cannot be directly applied to Minimax Weighted CSPs since the quantifiers change
the semantics of constraints. In particular, applying these consistency algorithms on
constraints constraining on max variables may result in unsound prunings. We need
to devise consistency notions for Minimax Weighted CSPs that take quantifiers into
account. We first study conditions on when a pruning/backtracking is sound.

To prune values of Minimax Weighted CSPs, the main idea is that if the A-cost
of a sub-problem is greater than or equal to the upper bound ub (less than or equal
to the lower bound lb resp.), we can apply pruning techniques based on alpha-
beta search. Let P[x1..i−1 = v1..i−1, xi = v] denote the subproblem P[x1 =
v1][x2 = v2]...[xi−1 = vi−1][xi = v]. Formally, we consider two conditions:
∃v ∈ Di s.t. ∀v1 ∈ D1, ..., vi−1 ∈ Di−1:

A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≥ ub (1)
A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≤ lb (2)

where ub and lb are the upper and lower bounds in alpha-beta pruning respectively.
When either of the above conditions is satisfied, we can apply prunings/backtrackings
according to Table 1 [21,15].

Table 1 When can we prune/backtrack

A-cost ≥ ub ≤ lb
Qi = min prune v backtrack
Qi = max backtrack prune v

Theorem 1 Suppose we were given a Minimax Weighted CSP P . If Condition (1)/(2)
forP is satisfied, applying prunings and backtrackings in alpha-beta pruning accord-
ing to Table 1 is sound. [21]

Proof (Sketch) Reasons to perform prunings and backtracking for min and max are
symmetrical. We only describe the case when Qi = min. Suppose Condition (1)
holds. We consider A-cost(s) for sub-problems P[x1..i−1 = v1..i−1]. Without loss of
generality, we writePi−1 to represent one of these sub-problemsP[x1..i−1 = v1..i−1]
by fixing values v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1. We will see that the proof
using Pi−1 applies for all sub-problems P[x1..i−1 = v1..i−1], regardless of which
values we fix. Given Qi = min, we obtain:

A-cost(Pi−1) = min
a∈Di

Pi−1[xi = a]

If A-cost(Pi−1) < ub, the following must be true:

∃v′ ∈ Di where v′ 6= v s.t. A-cost(Pi−1[xi = v′]) < ub

Pruning value v does not change the A-cost of Pi−1. If A-cost(Pi−1) ≥ ub, i.e. Pi−1
must not lead to any ultra-weak solutions, the following must be true:

∀v′ ∈ Di,A-cost(Pi−1[xi = v′]) ≥ ub
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After pruning value v, either domain wipe out occurs or A-cost(Pi−1) ≥ ub. For
both cases, the sub-problem Pi−1 cannot lead to solutions. Combining the two cases,
pruning value v does not change the problem from unsatisfiable to satisfiable (and
vice versa).

We now discuss Condition (2). Similar to the previous case, we consider the
A-cost for these sub-problems P[x1..i−1 = v1..i−1], and we fix Pi−1 to be one of
these sub-problems similarly. Given Qi = min, we obtain:

A-cost(Pi−1) = min
a∈Di

Pi−1[xi = a]

By Condition (2), Pi−1[xi = v] ≤ lb holds, and therefore:

A-cost(Pi−1) ≤ lb

Recall A-cost(P[x1..i−1 = v1..i−1, xi = v]) ≤ lb applies regardless on which value
v1, v2, . . . , vi−1 we fix. Therefore, we obtain:

∀v1 ∈ D1, ..., vi−1 ∈ Di−1,A-cost(P[x1..i−1 = v1..i−1]) ≤ lb

We can easily obtain the following result using the definition of A-cost: A-cost(P) ≤
lb. Therefore, we can perform backtrack as the current search must lead to ultra-weak
solutions in which the max player does not have a better move. ut

Example 2 Suppose we were given a Minimax Weighted CSP P with the ordered set
of variables {x1,x2,x3}, domains D1 = {a, b, c}, D2 = {a, b}, and D3 = {a, b, c},
the ordered set of quantifiers {Q1 = max, Q2 = min, Q3 = max}, and the global
upper bound 10. Suppose the A-cost for sub-problem P[x1 = a] is 1. Figure 4 shows
the upper bound ub, lower bound lb, and the A-costs for the remaining sub-problems.
By inspecting the figure, we can see that Condition (2) holds:

∃a ∈ D3,∀v1 ∈ D1,∀v2 ∈ D2,A-cost(P[x1 = v1][x2 = v2][x3 = a]) ≤ lb

By Table 1, we can prune value a of x3. We can observe that ultra-weak solutions
must not contain the assignment x3 = a, and therefore, we can prune the value. After
pruning value a of x3, we also observe that Condition (1) holds:

∃b ∈ D2,∀v1 ∈ D1,A-cost(P[x1 = v1][x2 = b]) ≥ ub

Similarly, we can prune value b of x2.

Example 3 Suppose the ordered set of quantifiers of Example 2 is replaced by {Q1 =
max, Q2 = max, Q3 = min}, and the A-cost for sub-problem P[x1 = a] remains
unchanged (A-cost(P[x1 = a]) = 1). Figure 5 shows the upper bound ub, lower
bound lb, and the A-costs for the remaining sub-problems. Costs for each complete
assignment remain the same as in Example 2. The only difference is the modified
A-costs for sub-problems, resulting from the change in quantifiers. By inspecting the
figure, we can observe that Condition (2) holds: ∃a ∈ D3 s.t. ∀v1 ∈ D1,∀v2 ∈ D2,

A-cost(P[x1 = v1][x2 = v2][x3 = a]) ≤ lb
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As Q3 = min, all the A-costs for sub-problems P[x1 = v1][x2 = v2],∀v1 ∈
D1, v2 ∈ D2 must be less than or equal to the lb. By induction, we can conclude
sub-problems P[x1 = v1],∀v1 ∈ D1 must be less than or equal to the lb, and obtain
A-cost(P) ≤ lb. Therefore following Table 1, the solver can backtrack.

One way to check Condition (1)/(2) is to find the exact value of the A-cost for
each sub-problem, which is computationally expensive. The problem is essentially
equivalent to determining if a variable assignment is a solution of a classical CSPs
in general, which is NP-hard. A common technique in constraint programming is
to formulate consistency notions and devise efficient algorithms, which aim at ex-
tracting and making useful information in a problem explicit (e.g. pruning and cost
information).

In Minimax Weighted CSPs, we aim at extracting cost information in the form
of bounds helping us to check whether Condition (1)/(2) is satisfied. Checking these
conditions helps us to backtrack or identify non-solution values from domains early
in the search. To extract these bounds, we introduce two approximating functions.
Function ubaf(P, xi = v) (lbaf(P, xi = v) resp.) [21,15] is an upper bound (a
lower bound resp.) approximation function if it approximates the A-cost for the set
S of sub-problems, where S = {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈
Di−1} s.t.:

∀P ′ ∈ S,A-cost(P ′) ≤ ubaf(P, xi = v)

(∀P ′ ∈ S,A-cost(P ′) ≥ lbaf(P, xi = v) resp.)

Function ubaf(P, xi = v) is tight iff maxP′∈S A-cost(P ′) = ubaf(P, xi = v).
Similarly, function lbaf(P, xi = v) is tight iff minP′∈S A-cost(P ′) = lbaf(P, xi =
v).

Corollary 2 Suppose we were given a Minimax Weighted CSP P . If ubaf(P, xi =
v) ≤ lb, we can prune value v of variable xi if Qi = max, and perform backtrack
if Qi = min in alpha-beta pruning. If lbaf(P, xi = v) ≥ ub, we can prune value
v of variable xi if Qi = min, and perform backtrack if Qi = max in alpha-beta
pruning. [21,15]
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Proof (Sketch) We can check that the following holds from the definition of approx-
imating functions.

Condition (1): lbaf(P, xi = v) ≥ ub =⇒
∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1,P[x1..i−1 = v1..i−1, xi = v] ≥ ub

Condition (2): ubaf(P, xi = v) ≤ lb =⇒
∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1,P[x1..i−1 = v1..i−1, xi = v] ≤ lb

We can then apply Table 1 according to the corresponding conditions. ut

Note that the two functions we define: lbaf() and ubaf() are a specific kind of
admissible heuristic functions [32] used by the game-solving community in alpha-
beta search. However, the primary goal in defining such functions is to assist us in
devising constraint propagation algorithms (to prune values and/or backtrack) since
our framework is a constraint based framework. Exploring other general game solv-
ing strategies/principles which could utilize these two functions will be left as future
work.

The main idea is that if we can implement lbaf()/ubaf() with good and efficient
approximations, we can identify non-solution values from variable domains or per-
form backtracking earlier in search. We show the high-level propagation routine for
function local consistency in our solver in Figure 6 to achieve prunings/back-
tracking according to Table 1 by utilizing lbaf() and ubaf(). Line 4 to 17 show the
main propagation loop, which continues to propagate until no more values can be
pruned. Since finding the exact A-cost is difficult, the algorithm utilize the estimated
bounds by calling the two approximation functions (lbaf() in line 8 and ubaf() in line
13). After computing the two estimated bounds: ap lb for the estimated lower bound
and ap ub for the estimated upper bound, we then perform prunings/backtrackings
according to Table 1. Recall in Table 1, there are a total of four different cases to
handle. Line 10, 12, 15, and 16 show the implementation of the top left, bottom left,
top right, and bottom right cases in Table 1 respectively. To perform prunings, we
use the function P[xj != u] to prune a value u from domain Dj of variable xj .
To perform backtrackings, we use two return values: UB BTK and LB BTK to distin-
guish the two different backtracks (i.e. the bottom left and top right case) in Table 1 .
If there are no backtrackings, the function returns NO BTK.

Function local consistency() will be called at line 4 in the main alpha-
beta search (in Figure 3) before entering the main routine. If no early backtrack-
ings could be found and detected by checking the conditions (Condition (1) / (2))
in local consistency(), the main alpha-beta search will then enters the main
searching routine. If early backtracking is found (top right or bottom left case in Ta-
ble 1), we distinguish the two cases by returning different flags. For the top-right
(bottom-left resp.) case, the function will return LB BTK (UB BTK resp.). This will
allow the alpha-beta algorithm backtrack by returning lb (ub resp.) to indicate that
the min player (max player resp.) has a move in the future which is able to guarantee
the costs lower than (higher than resp.) then the current best cost of the max player
(min player resp.). By returning lb (ub resp.), we can force the alpha-beta search to
backtrack to the latest assigned max variable (min variable resp.) to allow the max
player (min player resp.) finding a better action.
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1 function local_consistency():
2 i = firstx(P)
3 changed = true
4 while changed:
5 changed = false
6 for j in i..n:
7 for u in Dj:
8 ap_lb = lbaf(P, xj = u)
9 if ub <= ap_lb:

10 if Qj == min: P = P[xj != u]
11 changed = true
12 if Qj == max: return UB_BTK
13 ap_ub = ubaf(P, xj = u)
14 if ap_ub <= lb:
15 if Qj == min: return LB_BTK
16 if Qj == max: P = P[xj != u]
17 changed = true
18 return NO_BTK

Fig. 6 The high-level propagation routine using the two approximation functions

5 Consistency Techniques

This section discusses how we utilize costs information from unary constraints and
binary constraints to formulate node and (full directional) arc consistencies. We start
by giving an lbaf() for node consistency called nclb(), which formulates lower
bounds by gathering unary costs. We then further describe a stronger lbaf() for (full
directional) arc consistency called aclb(). To approximate upper bounds, we propose
two approaches by utilizing the Duality Principle: duality of quantifiers and duality
of constraints. In the last part, we discuss how to strengthen our consistency notions,
by incorporating techniques from Weighted CSPs.

We write Ci for the unary constraint on variable xi, Ci,j for the binary constraint
on variables xi and xj where i < j,Ci(u) for the cost returned by the unary constraint
when u is assigned to xi, and Ci,j(u, v) for the cost returned by the binary constraint
when u and v are assigned to xi and xj respectively. To simplify our notations, we
write the minimum costs minu∈Dj

Cj(u) and maximum costs maxu∈Dj
Cj(u) of

a unary constraint Cj as minCj and maxCj respectively. We further write QjCj

to mean minCj if Qj = min, and maxCj if Qj = max. Algorithms for finding
minCj , maxCj , andQjCj (via functions min(), max(), and Q() resp.) are shown
in Figure 7. The time complexity of these algorithms are in O(d), where d is the
maximum variable domain size.

5.1 Node Consistency: Lower Bound

We first give the definition for nclb(). We then sketch the proof showing nclb() is an
lbaf() using two lemmas. Without loss of generality, we now consider unary MWC-
SPs, which are MWCSPs with unary constraints only. We will show that comput-
ing A-costs for any sub-problems of unary MWCSPs are efficient (linear time), and
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1 function min(Ci):
2 minimumCost = +∞
3 for u in Di:
4 if Ci(u) < minimumCost: minimumCost = Ci(u)
5 return minimumCost
6 function max(Ci):
7 maximumCost = -∞
8 for u in Di:
9 if Ci(u) > maximumCost: maximumCost = Ci(u)

10 return maximumCost
11 function Q(Ci):
12 if Qi == min: return min(Ci)
13 if Qi == max: return max(Ci)

Fig. 7 Common routines for finding minimum and maximum costs for unary constraints

therefore, computing the lower bound for these sub-problems are efficient. We then
show using the same procedure on general MWCSPs, by viewing unary constraints
only, the bound is still correct.

Definition 1 The nclb(P, xi = v) function approximates the A-cost for a set S of
sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

nclb(P, xi = v) ≡ C∅ ⊕ (
⊕
j:j<i

minCj)⊕ (Ci(v))⊕ (
⊕
j:i<j

QjCj)

where Qj ∈ Q is the quantifier for variable xj where j > i.

Lemma 3 The A-cost of an MWCSP P with only unary constraints is equal to⊕n
i=1QiCi [15].

The proof of Lemma 3 follows directly from the definition of A-costs for MWCSPs.

Lemma 4 Suppose we were given an MWCSP P = (X ,D, C,Q, k). Let E to be an
arbitrary subset of constraints from C and we define P ′ to be an MWCSP obtained
from P by removing all constraints in E (i.e. P ′ = (X ,D, C − E,Q, k)).

A-cost(P ′) ≤ A-cost(P)

Proof (Lemma 4) We first consider the simplified case where E contains only one
constraint C ′, i.e. E = {C ′}. Suppose C ′ has a scope of S′. We have

C∅ ⊕
⊕
CS∈C

CS(l[S]) = C∅ ⊕ C ′(l[S′])⊕
⊕

CS∈C−E
CS(l[S])

≥ C∅ ⊕
⊕

CS∈C−E
CS(l[S])
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for all possible complete assignments l. Note that we can re-write the definition of
A-costs as:

A-cost(P) = Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕
CS∈C

CS(l[S])]

where l = {x1 = v1, x2 = v2, . . . , xn = vn}. In MWCSPs, all quantifiers are either
min or max which are monotonic aggregators/functions. By monotonic properties,
this allow us to achieve,

Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕
CS∈C

CS(l[S])]

≥ Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C−E
CS(l[S])]

Observe that C∅ ⊕
⊕

CS∈C−E CS(l[S]) is the cost function for P ′, this gives

A-cost(P) ≥ A-cost(P ′)

where E contains a constraint (i.e. |E|= 1). We now have established the lemma
for removing one constraint from the problem. In general E has more than one con-
straint. Since removing multiple constraints can be viewed as removing a series of
constraints, and therefore, the lemma holds. ut

Theorem 2 Function nclb(P, xi = v) is a lower bound approximating function
lbaf(P, xi = v). [15]

Proof Lemma 3 suggests the computation of A-costs for unary MWCSPs can be
done in O(nd), where n is the number of variables and d is the maximum domain
size. Therefore, computing the A-costs for any sub-problems is also efficient. The
function nclb() can be seen as a function extracting A-costs for the sub-problem in
S with minimal A-costs following Lemma 3, by partitioning unary constraints into
three groups: (a) Cj where j < i; (b) Ci; and (c) Cj where j > i.

(a) 2nd term (
⊕

j:j<i minCj): C1, C2, . . . , Ci−1
Recall each sub-problem in the set S will be obtained from P by assigning a
combination of assignments from D1, D2, . . . , Di−1. We should consider the
sub-problem in the set having the lowest costs. Therefore, we choose the mini-
mum costs for these unary constraints.

(b) 3rd term (Ci(v)): Ci

All sub-problems in the set share a common assignment xi = v, and therefore,
we include the costs Ci(v).

(c) 4th term (
⊕

j:i<j QjCj): Ci+1, Ci+2, . . . , Cn

For the max player, he/she could have a strategy which selects values maximizing
the unary constraint on his/her variables. On the other hand, whatever values
the min player is choosing, the min player must at least incur a cost which is
equal to the summation of the minimum costs of the unary constraints on the
min variables. Therefore, this would guarantee the max player must be able to
achieve a cost of at least

⊕
j:i<j QjCj .
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Fig. 8 Constraints for Example 4
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Fig. 9 Example 5: Before and after pruning a of x2

If P has only unary constraints, we can observe that function nclb() will always give
a tight lower bound approximation for the set of problems. Note that MWCSPs may
have binary constraints or even high-arity constraints. However, Lemma 4 shows that
we can infer the lower bound of a problem by estimating the lower bound of a sub-
problem with parts of the constraints being ignored. Since nclb() is a lower bound
approximation function for the sub-problem containing unary constraints only, it will
also be a lower bound approximation function for general MWCSPs. ut

Example 4 We re-use Example 1. Suppose we were at sub-problem P ′ = P[x1 = a]
and we have just visited the further sub-problem P ′[x2 = a] which has a new upper
bound of 7. Before visiting P ′[x2 = b], we try to prune some values according to Ta-
ble 1 using the new upper bound. Note that since x1 is assigned, we assume the solver
will reduce all binary constraints constraining on variable x1 to unary constraints and
merge with existing unary constraints. Figure 8 shows the sub-problem P ′. Suppose
now nclb() is applied and no unary costs for bounded variables, i.e.C∅ = 0. We want
to check if the value b can be pruned from D2. In the sub-problem P ′[x2 = b], the
quantifier Q3 and Q4 are both max, and they will take at least the maximum unary
cost maxC3 and maxC4. We have C∅ + minC1 + C2(b) + maxC3 + maxC4 =
0 + 0 + 0 + 4 + 3 = 7 ≥ ub. The cost of any ultra-weak solution assignment in
the sub-problem P ′[x2 = b] is at least 7. The value b can therefore be removed from
domain D2. Notice that such a node cannot be pruned by basic alpha-beta pruning.

Some might suggest the following to achieve a tighter bound: 1) replace i < j in
the last term by i 6= j to remove the second term, and 2) modify nclb(P, xi = v) such
that it returns a lower bound of the A-cost of the sub-problem P[xi = v] (instead of
a set S of sub-problems). However, these changes may lead to incorrect prunings, as
we demonstrate in Example 5.

Example 5 Suppose we were given an MWCSP P with the ordered sequence of two
variables (x1, x2), domains D1 = D2 = {a, b}, two unary constraints C1 and C2,
one binary constraint C1,2, and a quantifier sequence (Q1 = max, Q2 = min). We
denote the global upper bound by k. Non-zero costs given by constraints are listed
as follows: C1(a) = 50, C2(a) = 9, C1,2(b, b) = k. If k = 59, the A-cost of P
is 50. Figure 9 (left picture) shows the labeling tree for P . If i < j is replaced by
i 6= j in Definition 1, nclb(P, x2 = a) returns 59 > A-cost(P[x1 = b][x2 = a]) =
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1 function computeArrayOfMinCosts(P):
2 M[1] = 0
3 for i in 2..n:
4 j = i - 1
5 M[i] = M[j] + min(Cj)
6 return M
7 function computeArrayOfQuantifiedCosts(P):
8 Q[n] = 0
9 for i in n-1..1:

10 j = i + 1
11 Q[i] = Q[j] + Q(Cj)
12 return Q
13 function NC_LB(P, xi = v):
14 return C∅ + M[i] + Ci(v) + Q[i]

Fig. 10 Algorithms for implementing nclb()

9. If nclb(P, x2 = a) returns a lower bound approximation of A-cost(P[x2 = a]),
it may return 59. Both cases may cause value a of x2 to be pruned. The right picture
in Figure 9 shows the labeling tree after pruning, and we can easily observe that the
A-cost of the new problem changes from 50 to 59. The pruning is unsound.

We show the function NC LB(P, xi = v) for implementing nclb() in Fig-
ure 10. A direct approach in computing nclb() is to directly compute all the
terms in the function for each of the different assignments xi = v. However,
it is easy to note some of these terms, e.g.

⊕
j:j<i minCj and

⊕
j:i<j QjCj ,

can be pre-computed to avoid unnecessary re-computations for each of the dif-
ferent assignments xi = v. In addition, it is easy to observe that after comput-
ing

⊕
j:j<i minCj for a variable xi, computing the same term for the next vari-

able xi+1 is essentially: (
⊕

j:j<i minCj) + minCi. That means we only need
to compute minCi and add up the previous result to compute the term for the
next variable. Similar approach could be used for the term

⊕
j:i<j QjCj . For each

variable xi, we will compute and maintain the term
⊕

j:j<i minCj and the term⊕
j:i<j QjCj by calling function computeArrayOfMinCosts() and function

computeArrayOfQuantifiedCosts() respectively. Array M and Q will then
store the results for these terms respectively. Both functions run in O(nd), where n
is the number of variables and d is the maximum variable domain size. After pre-
processing the two arrays M and Q, each query to the function NC LB() to obtain
the lower bound runs only in O(c), where c is the constant time. In total, querying
NC LB() for all variables and their values in an MWCSP will have a runtime of
O(nd). To ease our implementation effort, we implement the ⊕ operator using stan-
dard addition and the 	 operator using standard subtraction in all our consistency
implementations. We add extra routine to check all addition operations to see if the
summed value is larger than k and require re-assigning to k.
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5.2 Arc Consistency: Lower Bound

To obtain stronger lower bound, we further define function aclb() based on nclb().
Without loss of generality, we restrict our attention to MWCSPs which have only
unary constraints and one binary constraint. We will show that computing any sub-
problems for these MWCSPs are efficient (polynomial time), and therefore, comput-
ing the lower bound for these sub-problems are again efficient. By similar argument
for justifying nclb(), viewing unary constraints plus one binary constraint on general
MWCSPs, the bound is still correct.

Definition 2 The aclb[Ci,j ](P, xi = v) function approximates the A-cost for the
set S of sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}.
Define

aclb[Ci,j ](P, xi = v) ≡ C∅ ⊕ (
⊕
k:k<i

minCk)⊕ (Ci(v))

⊕ (
⊕

k:i<k∧j 6=k

QkCk)⊕ ( Qj
u∈Dj

{Cj(u)⊕ Ci,j(v, u)})

where Ci,j is a binary constraint on variable xi and xj where i < j, Qj ∈ Q is the
quantifier for variable xj , and Qk ∈ Q is the quantifier for variable xk where k > i
and k 6= j.

Comparing to nclb(), the first three terms are the same. The fourth term is equivalent
to the last term in nclb(), except we do not consider costs for constraint Cj , which
will be considered in the fifth term.

Theorem 3 The function aclb[Ci,j ](P, xi = v) for binary constraint Ci,j is a lower
bound approximating function lbaf(P, xi = v). [15]

To prove the function is a lower bound approximation function, we first show Lemma 5.

Lemma 5 The A-cost of an MWCSP P = (X ,D, C,Q, k) with only unary con-
straints and one binary constraint Ci,j is equal to

(
⊕

k∈[1...n]\{i,j}

Qk
u∈Dk

Ck(u))⊕ ( Qi
u∈Di

[ Qj
v∈Dj

[Ci(u)⊕ Cj(v)⊕ Ci,j(u, v)]])

where Qi, Qj , Qk ∈ Q. [15]

Lemma 5 follows directly from the definition of A-costs.

Proof From Lemma 5, suppose we were given an MWCSP P with only unary con-
straints and one binary constraint Ci,j , its sub-problem P[x1..i = v1..i] with a fixed
value assignment {x1 = v1, . . . , xi = vi} has the following A-costs:⊕
k:k<i

Ck(vk)⊕
⊕

k∈[i+1...n]\{j}

Qk
u∈Dk

Ck(u)⊕ Qj
u∈Dj

[Ci(vi)⊕ Cj(u)⊕ Ci,j(vi, u)]
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Since Ci(vi) in the third term is fixed and it is invariant to any value in Dj , we can
rewrite the expression as:⊕

k:k<i

Ck(vk)⊕ Ci(vi)⊕
⊕

k:i<k∧k 6=j

Qk
u∈Dk

Ck(u)⊕ Qj
u∈Dj

[Cj(u)⊕ Ci,j(vi, u)]

One point to note is that only the first term in the above expression
⊕

k:k<i Ck(vk)
is variant towards different values for variables preceding xi (i.e. variable xk where
k < i). Therefore, for the set of sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈
D1, . . . , vi−1 ∈ Di−1} which share the common assignment xi = v, we can ob-
serve that the sub-problem(s) which has the minimum A-costs should have a value
assignment x1 = v1, x2 = v2, . . . , xi−1 = vi−1 s.t. the A-costs is equal to⊕

k:k<i

minCk ⊕ Ci(vi)⊕
⊕

k:i<k∧k 6=j

Qk
u∈Dk

Ck(u)⊕ Qj
u∈Dj

[Cj(u)⊕ Ci,j(v, u)]

This gives a tight lower bound for the set S of sub-problems of the original P which
has only unary constraints and one binary constraint Ci,j . Note that general MWC-
SPs may have more than one binary constraints and even high-arity constraints. Since
aclb[Ci,j ]() is a lower bound approximation function for a sub-problem which con-
siders only unary constraints and a binary constraint Ci,j , by Lemma 4, the function
is also a lower bound approximation function for general MWCSPs. ut

Example 6 We re-use Example 4 and Figure 8. Recall we are at sub-problem P ′ =
P[x1 = a] and we have already visited the further sub-problem P ′[x2 = a]. Be-
fore visiting P ′[x2 = b], we now try to prune some values according to Table 1
using aclb(). Similarly, we assume there no unary costs for bounded variables, i.e.
C∅ = 0, and we want to check if the value b can be pruned from D2. Function
aclb[C2,4](P, x2 = b) is equal to:

C∅ ⊕minC1 ⊕ C2(b)⊕maxC3 ⊕ max
u∈D4

{C4(u)⊕ C2,4(b, u)}

=0⊕ 0⊕ 0⊕ 4⊕max{C4(a)⊕ C2,4(b, a), C4(b)⊕ C2,4(b, b), C4(c)⊕ C2,4(b, c)}
=4⊕max{3⊕ 0, 1⊕ 2, 3⊕ 3}
=4⊕ 6 = 10

The cost of any assignment in the sub-problem P ′[x2 = b] is at least 10. In previous
example (Example 4), nclb(P, x2 = b) returns 7. We can see that considering binary
constraint is worthwhile as the lower bound estimation is more accurate.

Note that Definition 2 is only one possible approach to define a lower bound
approximation function for Arc Consistency (AC), following Lemma 5. It is designed
in such a way that only one binary constraint is used in bounds calculation for costs
estimation, and our approach is similar to AC in Quantified CSPs [23,13]. The only
trick in computing the function is to combine costs on constraints Ci, Cj , and Ci,j

efficiently. Some readers might suggest us to directly transfer the costs computed
by aclb() to C∅ or unary constraints. However, we observe that transferring such
costs directly may result in binary constraints with negative costs and violates the
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1 function AC_LB(P, Cij, xi = v):
2 if Qj == min:
3 minimumCost = +∞
4 for u in Dj:
5 if Cj(u) + Cij(v,u) < minimumCost:
6 minimumCost = Cj(u) + Cij(v,u)
7 return C∅ + M[i] + Ci(v) + [Q[i] - Q(Cj)] + minimumCost
8 if Qj == max:
9 maximumCost = -∞

10 for u in Dj:
11 if Cj(u) + Cij(v,u) > maximumCost:
12 maximumCost = Cj(u) + Cij(v,u)
13 return C∅ + M[i] + Ci(v) + [Q[i] - Q(Cj)] + maximumCost

Fig. 11 Algorithms for implementing aclb()

cost range for the valuation structure (i.e. [0..k]). Unfortunately, this may also violate
a basic assumption in (M)WCSPs that the minimum possible costs a constraint is
allowed to return is zero, which is fundamental in designing nclb() and aclb().

We now show the function AC LB() for computing aclb() in Figure 11. The
function assumes a common assignment xi = v and a binary constraint Ci,j

on xi were given from the input. The computation of the first three terms: C∅,⊕
k:k<i minCk, and Ci(v) in aclb() is the same as nclb(). For the fourth term⊕
k:i<k∧j 6=kQkCk in aclb(), it is essentially similar to the last term in nclb(). Re-

call that the last term in nclb() is pre-computed using the array Q and maintained
by function computeArrayOfQuantifiedCosts() (in Figure 10). To avoid
unnecessary computation, we therefore re-use and modify the result stored in Q for
the computation in aclb(), by Q[i] - Q(Cj) in line 7 and 13. Note that the minus
operation used to compute Q[i] - Q(Cj) is standard subtraction, not 	 defined
in the Weighted CSP framework, to assure that Q[i] - Q(Cj) truly computes the
required term. The for loops in line 3 to 6 and line 9 to 12 are used to compute the
last term in aclb(), which depends on the quantifiers of the variable xj .

Suppose we were given a binary constraint Cij , it is not hard to check line 3 to
line 7 (for Qj = min) and line 9 to line 13 (for Qj = max) run in O(d) assuming
the array M and Q have been pre-computed, where d is the maximum variable domain
size. Suppose there are e binary constraints and n variables in an MWCSP, and the
maximum variable domain size is d. We will need O(ed) queries to call AC LB()
for all binary constraints and all variable assignments xi = v. The overall runtime
complexity will then be in O(ed2) which is bounded by O(n2d2).

It is natural for us to further ask for stronger/tighter functions which consider
more than one binary constraint. Note that in classical local consistency enforcement
such as: AC in CSPs [2]; AC* in Weighted CSPs [17]; and (Q)AC [23] in Quantified
CSPs, we usually handle one (binary) constraint at a time. Consistency enforcement
will be performed many times at each node of the search tree, and considering mul-
tiple constraints at a time may cause a huge increase in time complexity. We have
to maintain a balance between amount of reasoning at each search node and amount
of pruning achieved. There are stronger consistency notions with efficient algorithms
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which consider more than one binary constraint, e.g. Max Restricted Path Consis-
tency [11] in CSPs and OSAC [10] in Weighted CSPs/Valued CSPs. Investigations
on stronger notions for MWCSPs is an interesting future work. One possibility to
enhance aclb is to consider a subset of constraints that forms a tree, and employ a
dynamic programming approach to enforce such stronger consistencies.

5.3 Node and Arc Consistency: Upper Bounds

In linear programming, duality [24,35] provides a standard way to obtain lower
bounds (for minimization problems). In fact, the Principle/Theory of Duality [24]
suggests that we can convert the original (primal) problem to its dual form, and tackle
the problem by using both forms. We can often find techniques in many areas utilizing
the Principle. In integer programming, we can obtain the lower bound of the origi-
nal problem by tackling the Lagrangian dual [35]. In classical CSPs, hidden variable
transformation is a technique which is used to transform general CSPs into binary
CSPs (i.e. dual problem). The technique reformulates the original problem by ex-
pressing each constraint as a variable [29,2] in the dual problem. In Quantified CSPs,
dual consistency [6] was defined by creating the dual problem, involving negation of
the original constraints. We will now show how to implement upper bound approxi-
mation functions ncub() and acub() by using the duality principle in MWCSPs.

5.3.1 Duality of Constraints

One approach to create ncub()/acub() is to utilize the constraint duality property,
which is similar to dual consistency [6] in Quantified CSPs. We first define a dual
problem of an MWCSP.

Definition 3 Suppose we were given an MWCSP P = (X ,D, C,Q, k). A dual prob-
lem of P is an MWCSP P† = (X ,D, C†,Q†, k) s.t. for a complete assignment l,

C†∅ ⊕†
⊕

C†
s∈C†

† C†S(l[S]) = −1× (C∅ ⊕
⊕
CS∈C

CS(l[S]))

The new valuation structure, called negative valuation structure V †(k), for the
dual problem P† will be defined as ([−k...0],⊕†,≤). The structure contains a set of
integers [−k...0] with standard integer ordering≤. Addition⊕† is defined by a⊕†b =
max(−k, a + b). For any integer a and b where a ≤ b, subtraction 	† is defined by
a	† b = a− b if a 6= −k, and a	† b = −k if a = −k. We also require Q†i = min

if Qi = max, and Q†i = max if Qi = min [15]. Note that in the standard definition
of valuation structure, the max element should be an annihilator and the min element
should be a neutral element. In the negative valuation structure, the max element 0 is
now a neutral element and the min element −k is now an annihilator.

We can observe that A-cost(P) = −1 × A-cost(P†), and a straightforward
method to construct the dual constraints is to multiply costs for all constraints in
the original problem by −1. The valuation structure V †(k) for the dual problem are
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natural extensions from the original problemV (k), by flipping costs from the positive
axis to the negative axis. For the rest of the paper, we may abuse notations by drop-
ping the † sign if the context is clear that we are working on the dual problem. In the
dual problem definition, we do not require that every constraint in the dual returns
exactly -1 times the costs of its corresponding constraint in the original problem. The
reason behind this is that the set of constraints which is efficient and effective to esti-
mate bounds in the original problem may not be necessarily efficient and effective to
estimate bounds in the dual problem. We allow solvers and algorithms to handle the
dual problem, in particular constraint representation, separately as long as the result-
ing overall A-costs for the original and the dual is related by a multiplication factor of
−1. This would also allow future work focusing on consistencies and transformations
on dual problems.

We then show how we utilize dual problem(s) to check ubaf(P, xi = v) ≤ lb
(Condition 2) for an MWCSP P .

Theorem 4 Suppose we were given an MWCSP P and its dual problem P†. Suppose
there is a lower bound approximation function lbaf(). [15]

lbaf(P†, xi = v) ≥ −1× lb =⇒ Condition (2)

The proof of Theorem 4 can be easily constructed from the definition. We can also
infer that lbaf(P†, xi = v) × −1 is an upper bound approximation function for the
original problem. In fact, the upper bound ub† (lower bound lb† resp.) of P† is equal
to −1 times the lower bound lb ( upper bound ub resp.) of P . Therefore, we further
define ub† = −1× lb, and lb† = −1× ub.

Example 7 We re-use Example 4 and the constraint shown in Figure 8. Recall we
are at the sub-problem P ′ = P[x1 = a] and we have already visited P ′[x2 = a].
Figure 12 and 13 show the labeling tree for the sub-problem and its dual problem.
It is not hard to check the A-costs for every sub-problem in the original problem
is −1 times the A-costs of its corresponding sub-problem in the dual problem. It is
also not hard to infer a lower bound (an upper bound resp.) approximation function
for a sub-problem in the dual problem is also an upper bound (a lower bound resp.)
approximation function for the original problem (and vice versa). Figure 14 shows a
possible set of constraints for the dual problem obtained by directly multiplying -1 to
the costs return by the constraints in Figure 8.

We will now show how to implement ncub() and acub(), via checking the nclb()
and aclb() for the dual problem. Recall when we define nclb() and aclb(), we have
made the assumption that the minimum possible costs that can be returned by a con-
straint is zero. If we construct a dual constraint by multiplying -1 to the costs of its
corresponding constraint in the original problem, most of the constraints in the dual
problem will return costs less than zero. This would mean that if we need to compute
a lower bound approximation for the dual problem, we cannot directly re-use nclb()
and aclb(). In addition, this would also hinder us from re-using transformation tech-
niques from the WCSP framework since most of the transformation techniques have
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Fig. 12 Labeling tree for the original problem Fig. 13 Labeling tree for the dual problem

Fig. 14 Dual constraints in Example 7 Fig. 15 Normalized constraints in Exam-
ple 8

the assumption that the minimum possible costs returned by a constraint is zero. To
tackle this issue, we further define normalized form for the dual problem to satisfy
the assumption.

Definition 4 Suppose we were given a dual problem P† = (X ,D, C†,Q†, k). The
normalized form of the dual problem is PN = (X ,D, CN ,Q†, k). We require all
constraints except CN

∅ to return non-negative costs, i.e.

∀CN
s ∈ CN − {CN

∅ } : 0 ≤ CN
S (l[S]) ≤ k.

For all complete assignments l, we have two conditions:

[C†∅ ⊕†
⊕

C†
s∈C†

† C†S(l[S]) = −k] ⇐⇒ [CN
∅ +

∑
CN

s ∈CN
CN

S (l[S]) ≤ −k], and

[0 ≥ C†∅ ⊕†
⊕

C†
s∈C†

† C†S(l[S]) > −k] ⇐⇒

[CN
∅ +

∑
CN

s ∈CN
CN

S (l[S]) = C†∅ ⊕†
⊕

C†
s∈C†

† C†S(l[S])]

By observing Definition 4, we can see that all constraints except CN
∅ in the normal-

ized form will return costs from 0 to k. This would allow us to re-use transformation
techniques from WCSPs (with slight modification to handle CN

∅ ). We now give the
algorithm to transform a dual problem into its normalized form.
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1 function Normalize(P):
2 //For unary constraints
3 for Ci in C:
4 minCost = +∞
5 for u in Di:
6 if Ci(u) < minCost: minCost = Ci(u)
7 if minCost < 0:
8 C∅ = C∅ + minCost
9 for u in Di: Ci(u) = Ci(u) - minCost

10 //For binary constraints
11 for Cij in C:
12 minCost = +∞
13 for u in Di:
14 for v in Dj:
15 if Cij(u,v) < minCost: minCost = Cij(u,v)
16 if minCost < 0:
17 C∅ = C∅ + minCost
18 for u in Di:
19 for v in Dj:
20 Cij(u,v) = Cij(u,v) - minCost

Fig. 16 Algorithms to perform normalization for the dual problem

Lemma 6 Function Normalize (in Figure 16) transforms a dual problem into its
normalized form.

Lemma 6 suggests an algorithm to transform a dual problem into its normalized form.
The algorithm assumes the dual problem only contains unary and binary constraints.
The trick we use to maintain the same overall costs of a complete assignment (except
those with costs ≤ −k) is to allow CN

∅ (the global costs) to become negative and
unbounded. The main goal of the function is to transfer costs from C†∅ to constraints
with negative costs until all constraints (exceptC†∅) return non-negative costs. It is not
hard to see all constraints except C†∅ will return costs from 0 to k after normalization.
We implement and execute the function Normalize once during pre-processing in
the root node to convert the dual problem into its normalized form. Since the formu-
lations of nclb() and aclb() do not require the global costs CN

∅ must be positive, we
can re-use nclb() and aclb() on the normalized form.

One potential drawback in our definition for normalized form is that we cannot
reuse the valuation structure for WCSPs (or the valuation structure for dual problem)
to bound costs within [0..k] (or [−k..0]). The main reason is that the costs range for
CN

∅ could be far less than −k in order to balance the increased costs for the other
constraints. A direct consequence is that now k (or −k in the dual form) cannot
be used as annihilator. In other words, if k (or −k) is found during a sequence of
summation operations, we cannot naively conclude the result is k (or −k). We have
to compute the whole sequence of operations before making any conclusions. To fix
this problem, we use standard addition instead of ⊕ on the normalized form. This
modification may result in costs of a complete assignment equal to −k in the dual
problem potentially map to costs less than −k in the normalized form.
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Example 8 We use the dual constraints (Figure 14) in Example 7 to illustrate how to
create the normalized constraints. To translate a dual constraint into the normalized
form, we first compute the minimum possible costs returned by the constraint. If the
minimum possible costs m is less than zero (i.e. m < 0), we then add −m to all
costs returned by the constraints. This will make the constraint return only positive
costs (including zero). To maintain costs equivalence, we then subtract−m fromCN

∅ .
Figure 15 shows resulting normalized form for the dual constraints in Figure 14.

Definition 5 and 6 show how we modify nclb and aclb to cope with the normalized
form. It is not hard to observe we only change ⊕ operators to standard additions.

Definition 5 The ncNlb (PN , xi = v) function approximates the A-cost for a set S of
sub-problems {PN [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

ncNlb (PN , xi = v) ≡ CN
∅ + (

∑
j:j<i

minCN
j ) + (CN

i (v)) + (
∑
j:i<j

Q†jC
N
j )

where Q†j ∈ Q† is the quantifier in the dual (normalized) problem for variable xj
where j > i.

Definition 6 The acNlb [CN
i,j ](PN , xi = v) function approximates the A-cost for the

set S of sub-problems {PN [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈ Di−1}.
Define

acNlb [CN
i,j ](PN , xi = v) ≡ CN

∅ + (
∑
k:k<i

minCN
k ) + (CN

i (v))

+ (
∑

k:i<k∧j 6=k

Q†kC
N
k ) + ( Qj

u∈Dj

†{CN
j (u) + CN

i,j(v, u)})

where CN
i,j is the binary constraint in the normalized dual problem on variable xi and

xj where i < j, Q†j ∈ Q is the dual quantifier for variable xj , and Q†k ∈ Q is the
dual quantifier for variable xk where k > i and k 6= j.

Example 9 Recall in Example 8, Figure 15 shows the resulting normalized form for
the dual constraints in Figure 14. Suppose we now apply the new ncNlb () on the nor-
malized dual problem on the assignment x2 = b, the function will become

CN
∅ + minCN

1 + CN
2 (b) + minCN

3 + minCN
4

=(−11− k) + 0 + k + 0 + 0 = −11

It is not hard to check -1 times −11 is a correct upper bound for the sub-problem
P ′[x2 = b] of the original problem. Similarly, suppose we now apply the new acNlb ()
for CN

2,4 on the assignment x2 = b, the function will become

CN
∅ + minCN

1 + CN
2 (b) + minCN

3 + min
v4∈D4

{CN
4 (v4) + CN

2,4(b, v4)}

=(−11− k) + 0 + k + 0 + min{4, 4, 1} = −10

Note that -1 times −10 is also a correct upper bound for the sub-problem P ′[x2 = b]
of the original problem.
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Theorem 5 The function ncNlb (PN , xi = v) is a lower bound approximating function
lbaf(PN , xi = v). The function acNlb [CN

i,j ](PN , xi = v) for binary constraint CN
i,j is

a lower bound approximating function lbaf(PN , xi = v).

The proof of Theorem 5 is similar to the proofs of Theorem 2 and 3. We can repeat
the same proofs for Theorem 2 and 3 by modifying ⊕ operator to standard addition
and considering that only CN

∅ can hold negative costs for a normalized dual problem.

Definition 7 An MWCSP P is dual constraint node consistent (DC-NC) [15] iff:

∀xi ∈ X ,∀v ∈ Di : nclb(P, xi = v) < ub, and

∀xi ∈ X ,∀v ∈ Di : ncNlb (PN , xi = v) < ub†

Definition 8 An MWCSP P is dual constraint arc consistent (DC-AC) [15] iff:

P is DC-NC,
∀Ci,j ∈ C,∀v ∈ Di : aclb[Ci,j ](P, xi = v) < ub, and

∀CN
ij ∈ CN ,∀v ∈ Di : acNlb [CN

ij ](PN , xi = v) < ub†

Since DC-AC requires DC-NC to be satisfied by definition, DC-AC is automat-
ically strictly stronger than DC-NC. Readers may think that the second and third
conditions of DC-AC have essentially implied the first condition, and therefore, we
can omit the first condition. Assume now we ignore the first condition. For a variable
assignment xi = v, if there does not exists any binary constraints Ci,j (CN

i,j resp.) on
xi, we can see that the second (and third condition resp.) are not going to check the
bounds on the assignment as aclb() (acNlb () resp.) requires a binary constraint as one
of the input. Therefore, we add the first condition to guarantee even if xi does not
have a binary constraint xi, nclb(P, xi = v) (ncNlb (PN , xi = v) resp.) must still be
executed to maintain DC-NC.

Figure 17 shows the algorithm to enforce DC-AC, which can be seen as an im-
plementation of the high-level propagation routine in Figure 6. We skip explaining
function strengthening() in line 19 and 31 (enclosed in grey boxes), which
are used to improve the upper and lower bound estimation functions. This function
will be explained in Section 5.4. Function AC LB(P, Cjk, xj = u) (in line 25,
defined in Definition 2) and NC LB(P, xj = u) (in line 28, defined in Defini-
tion 1) implement the lower bound approximation function lbaf(P, xj = u) in
the high-level routine (in line 8 of Figure 6). By the duality of constraints, we can im-
plement the upper bound approximation function ubaf(P, xj = u) (in line 13
of Figure 6) by re-using the two functions AC LB() and NC LB() (in line 37 and
line 40) on the (normalized) dual problem PN (by using standard addition instead of
⊕ operations). For clarity issues, we abstract the two pruning/backtracking routines
into the two functions: upper bound pruning and lower bound pruning.

Note that for duality of constraints approach, we have to maintain both the
original problem P and the dual problem PN . If a value is being pruned on
the original problem P , we should also prune the value on the dual problem
PN (and vice versa). In this way, prunings caused by lower bound approxima-
tions may tighten upper bound approximations (and vice versa), and triggers more
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prunings. To handle this case, we slightly modify the usual pruning/backtrack-
ing routines (function upper bound pruning and lower bound pruning)
by adding line 4 and 11. Note that function AC LB and NC LB will be used
to compute bounds for both the original and the dual problem, we have to up-
date the two arrays M and Q (via calling computeArrayOfMinCosts and
computeArrayOfQuantifiedCosts in line 20 - 21 and line 32 - 33) before us-
ing AC LB/NC LB. To enforce DC-NC only, we can just skip calling function AC LB
and its corresponding pruning/backtracking routines, by skipping line 25-26 and
line 37-38. Note that we cannot skip calling NC LB if we want to maintain DC-
AC. The reason behind is that DC-AC by definition requires us to maintain DC-NC
and AC LB will not be called for a variable xi if there are no constraints Ci,j on the
variable (as AC LB is designed for variables with binary constraints).

We now analyze the time complexity of the propagation algorithm, by
first evaluating the while loop from line 16 to line 42. We let c to be
the constant time, n to be the number of variables, e to be the num-
ber of constraints, and d to be the maximum variable domain size. The
two functions upper bound pruning and lower bound pruning for han-
dling the pruning and backtracking routines run in O(c). We ignore the func-
tion strengthening() and assume it runs in unknown time complexity O(s).
From previous sections, we know that function computeArrayOfMinCosts
and computeArrayOfQuantifiedCosts run in O(nd) and each query to
NC LB() and AC LB() run in O(c) and O(d). From the algorithm, we can see that
NC LB() will be queried for each possible value assignments xj = u from the set
of future unassigned variables on both the original problem and the dual problem, its
overall running time will be bounded by O(nd). For AC LB(), the function will be
queried for all of the possible binary constraints and all possible value assignments
again on both the original problem and the dual problem. Therefore, the overall run-
ning time for the function will be in O(ed2). Overall, the time complexity for running
the while loop once is: O(s+nd+ed2) which is bounded by O(s+n2d2). In case we
want to maintain DC-NC only, the runtime for running the loop once is O(s+nd). In
the worst case, we could have the propagation while loop runs for nd times. There-
fore, the worst case time complexity for DC-AC is O(snd+ n2d2 + end3) (which is
bounded by O(snd+ n3d3)) and for DC-NC is O(snd+ n2d2).

5.3.2 Duality of Quantifiers

Another way to check Condition (2) for an MWCSP P is to scrutinize functions
implementing ubaf(P, xi = v), by repeating similar reasoning for nclb() on unary
MWCSPs (plus a binary constraint). The idea is to use the duality of quantifiers,
by replacing min quantifiers to max in the reasoning process. Recall we have three
groups of unary constraints to consider. One direct way is to consider the maximum
costs, instead of minimum costs from constraints in the first group (group (a)), hence
changing quantifiers from min to max. However, using the resulting upper bound
approximation functions, by reasoning on unary MWCSPs is incorrect for general
MWCSPs. We cannot neglect costs given by binary constraints (or even higher arity
constraints if exists). One way to make the bound correct is to add the maximum costs
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1 function upper_bound_pruning(ap_lb,ub):
2 if ub <= ap_lb:
3 if Qj == min: P = P[xj != u]
4 PN = PN[xj != u]
5 changed = true
6 if Qj == max: return UB_BTK
7 function lower_bound_pruning(ap_ub,lb):
8 if ap_ub <= lb:
9 if Qj == min: return LB_BTK

10 if Qj == max: P = P[xj != u]
11 PN = PN[xj != u]
12 changed = true
13 function local_consistency():
14 i = firstx(P)
15 changed = true
16 while changed:
17 changed = false
18

19 strengthening(P) ∗

20 computeArrayOfMinCosts(P)
21 computeArrayOfQuantifiedCosts(P)
22 for j in i..n:
23 for u in Dj:
24 for Cjk in C:
25 ap_lb = AC_LB(P, Cjk, xj = u)
26 upper_bound_pruning(ap_lb,ub)
27

28 ap_lb = NC_LB(P, xj = u)
29 upper_bound_pruning(ap_lb,ub)
30

31 strengthening(PN) ∗

32 computeArrayOfMinCosts(PN)
33 computeArrayOfQuantifiedCosts(PN)
34 for j in i..n:
35 for u in Dj:
36 for CNjk in CN:
37 ap_ub = -1 × AC_LB(PN, CNjk, xj = u)
38 lower_bound_pruning(ap_ub,lb)
39

40 ap_ub = -1 × NC_LB(PN, xj = u)
41 lower_bound_pruning(ap_ub,lb)
42

43 return NO_BTK

Fig. 17 The propagation routine for using duality of constraints

for constraints which will not be covered in the function. Function ncub(P, xi =
v) and acub(P, xi = v) are given as follows, and we write maxC? to mean the
maximum costs for constraints which are not considered in the function.

Definition 9 The ncub(P, xi = v) function approximates the A-cost for a set S of
sub-problems {P [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1}.
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Define:

ncub(P, xi = v) ≡ C∅ ⊕ (
⊕
j:j<i

maxCj)⊕ (Ci(v))⊕ (
⊕
j:i<j

QjCj)⊕ (maxC?)

where Qj ∈ Q is the quantifier for xj , j > i.

We can easily observe that maxC? is equal to
⊕

j,k:j 6=k maxCjk if there are only
unary and binary constraints.

Definition 10 The function acub[Ci,j ](P, xi = v) approximates the A-cost for the
set S of sub-problems: {P [x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈
Di−1}. Define:

acub[Ci,j ](P, xi = v) ≡ C∅ ⊕ (
⊕
j:j<i

maxCj)⊕ (Ci(v))⊕ (
⊕

k:i<k∧j 6=k

QkCk)

⊕Qju∈Dj
{Cj(u)⊕ Ci,j(v, u)} ⊕ (maxC?)

where Ci,j is the binary constraint on xi and xj where i < j, Qk is the quantifier for
variable xk where k > i and k 6= j, and Qj is the quantifier for variable xj .

If there are only unary and binary constraints, maxC? is equal to
⊕

Ck,l∈B maxCk,l,
where B = {Ck,l ∈ C|k 6= l} − {Ci,j}. This paper focuses on efficiently handling
unary and binary constraints only. Handling high order constraints and/or global con-
straints will be left as future work.

Theorem 6 Function ncub(P, xi = v) is an upper bound approximating function
ubaf(P, xi = v).

Theorem 7 The function acub[Ci,j ](P, xi = v) for binary constraint Ci,j is an up-
per bound approximating function ubaf(P, xi = v).

To prove the two theorems above, we need to introduce one more lemma.

Lemma 7 Suppose we were given an MWCSP P = (X ,D, C,Q, k). Let E to be an
arbitrary subset of constraints from C and we define P ′ to be an MWCSP obtained
from P by removing all constraints in E (i.e. P ′ = (X ,D, C − E,Q, k)).

A-cost(P) ≤ A-cost(P ′)⊕
⊕
C∈E

maxC

where maxC is the maximum possible costs returned by the constraint C.

Proof (Lemma 7) We first consider the simplified case where E contains only one
constraint C ′, i.e. E = {C ′}. Suppose C ′ has a scope of S′. We have

C∅ ⊕
⊕
CS∈C

CS(l[S]) = C∅ ⊕ C ′(l[S′])⊕
⊕

CS∈C−E
CS(l[S])

≤ C∅ ⊕
⊕

CS∈C−E
CS(l[S])⊕maxC ′
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for all possible complete assignments l. Note that we can re-write the definition of
A-costs as:

A-cost(P) = Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕
CS∈C

CS(l[S])]

where l = {x1 = v1, x2 = v2, . . . , xn = vn}. In MWCSPs, all quantifiers are either
min or max which are monotonic aggregators/functions. By monotonic properties,
this allow us to achieve,

Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕
CS∈C

CS(l[S])]

≤ Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C−E
CS(l[S])⊕maxC ′]

= maxC ′ ⊕ Q1
v1∈D1

Q2
v2∈D2

. . . Qn
vn∈Dn

[C∅ ⊕
⊕

CS∈C−E
CS(l[S])]

Observe that C∅ ⊕
⊕

CS∈C−E CS(l[S]) is the cost function for P ′, this gives

A-cost(P) ≤ maxC ′ ⊕A-cost(P ′)

where E contains a constraint (i.e. |E|= 1). We now have established the lemma
for removing one constraint from the problem. In general E has more than one con-
straint, however, removing multiple constraints can be viewed as removing a series
of constraints and the lemma therefore holds. ut

Proof (Theorems 6 and 7) To prove the two functions ncub() and acub() are correct
upper bound approximation functions, we re-use Lemma 3 and 5 again. Suppose
we were given an MWCSP P with only unary constraints (unary constraints and
one binary constraint Ci,j resp.), its sub-problem P[x1..i = v1..i] with a fixed value
assignment {x1 = v1, . . . , xi = vi} has the following A-costs:⊕

j:j<i

Cj(vj)⊕ Ci(vi)⊕
⊕
j:j>i

QjCj

(
⊕
k:k<i

Ck(vk)⊕
⊕

k∈[i+1...n]\{j}

Qk Ck ⊕ Qj
u∈Dj

[Ci(vi)⊕ Cj(u)⊕ Ci,j(vi, u)] resp.)

Only the first term in the above expression
⊕

j:j<i Cj(vj) (
⊕

k:k<i Ck(vk) resp.) is
variant towards different values being assigned for variables preceding xi. Therefore,
for the set of sub-problems {P[x1..i−1 = v1..i−1, xi = v]|v1 ∈ D1, . . . , vi−1 ∈
Di−1} which share the common assignment xi = v, we can observe that the sub-
problem(s) which has the maximum A-costs should have a value assignment x1 =
v1, x2 = v2, . . . , xi−1 = vi−1 s.t. the A-costs is equal to:⊕

j:j<i

maxCj ⊕ Ci(v)⊕
⊕
j:j>i

QjCj

(
⊕
k:k<i

maxCk ⊕ Ci(v)⊕
⊕

k:i<k∧k 6=j

Qk Ck ⊕ Qj
u∈Dj

[Cj(u)⊕ Ci,j(v, u)] resp.)



32 A. Lallouet, J.H.M. Lee, T.W.K. Mak, J. Yip

This gives a tight upper bound for the set S of sub-problems of the original P which
has only unary constraints (unary constraints and one binary constraint resp.). How-
ever, we cannot neglect costs given by higher arity constraints. From lemma 7, we
know that adding the maximum costs of all constraints which have not been consid-
ered (including C∅ which is a constant) will give an upper bound to the problem.
This completes the proof. ut

Example 10 We again re-use Example 4 and the constraint shown in Figure 8. Recall
we are at the sub-problem P ′ = P[x1 = a] and we have already visited P ′[x2 = a].
Function ncub(P ′, x2 = b) will be:

C∅ ⊕maxC1 ⊕ C2(b)⊕maxC3 ⊕maxC4 ⊕maxC2,4

which is equal to 11. Function acub[C2,4](P ′, x2 = b) will be:

C∅ ⊕maxC1 ⊕ C2(b)⊕maxC3 ⊕ max
u∈D4

{C4(u)⊕ C2,4(b, u)}

=0⊕ 0⊕ 0⊕ 4⊕max{C4(a)⊕ C2,4(b, a), C4(b)⊕ C2,4(b, b), C4(c)⊕ C2,4(b, c)}
=4⊕max{3, 3, 6} = 10

By observing the labeling tree in Figure 12, the two functions return correct lower
bound approximation for P ′[x2 = b].

Note that in general MWCSPs, we may have high-arity constraints and/or global
constraints. Computing maxC? for ncub()/acub() precisely during search essen-
tially means we have to find the maximum costs for each of these constraints, which
could be extremely computational expensive. One naive way to deal with high-arity
and/or global constraints is to pre-compute or estimate these maximum costs only
once during pre-processing in the root node. We then re-use these pre-computed costs
during search. In this paper, we deal with unary and binary constraints only. We will
maintain and update the maximum costs of all unary and binary constraints during
search. Efficient methods to compute and estimate the maximum costs for high-arity
/ global constraints during search will be left as future works.

Figure 18 shows the algorithm to compute ncub(), which is similar
to the algorithm for computing nclb(). We again pre-compute the sec-
ond and fourth term to avoid unnecessary re-computations for different
assignments xi = v. The second term

⊕
j:j<i maxCj is pre-computed

using function computeArrayOfMaxCosts, and results are stored in
the array N. It is easy to see computeArrayOfMaxCosts is similar to
computeArrayOfMinCosts for computing nclb() and the time complexity is
in O(nd), where n is the number of variables and d is the maximum variable do-
main size. We re-use the function computeArrayOfQuantifiedCosts
in Figure 10 to compute the fourth term in ncub(). We use func-
tion computeBinaryMaxCosts to sum up all the maximum costs for all
binary constraints. It is worth noting that computing computeBinaryMaxCosts
essentially scans all tuples of all binary constraints, and can be extremely time
expensive to compute (especially if it is used frequently). The time complexity
in the worst case is in O(ed2), where e is the number of binary constraints in the
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1 function computeArrayOfMaxCosts(P):
2 N[1] = 0
3 for i in 2..n:
4 j = i - 1
5 N[i] = N[j] + max(Cj)
6 return N
7 function max(Cij):
8 maxCost = -∞
9 for u in Di:

10 for v in Dj:
11 if maxCost < Cij(u,v): maxCost = Cij(u,v)
12 return maxCost
13 function computeBinaryMaxCosts(P):
14 totalSum = 0
15 for Cij in C: totalSum += max(Cij)
16 return totalSum
17 function NC_UB(P, xi = v):
18 return C∅ + N[i] + Ci(v) + Q[i] + totalSum

Fig. 18 Algorithms for implementing ncub()

problem and d is the maximum variable domain size. One way to improve the
efficiency in our solver is to compute the maximum costs of all binary constraints
and their total sum totalSum during pre-processing and then maintain these costs
(including totalSum) in the global memory. We will need O(e) space where
e is the number of binary constraints. We only perform update when a binary
constraint is removed/modified, e.g. values being pruned / value assignments occur.
After the modification, function max(Cij) will immediately return costs from the
memory instead of computing costs by scanning tuples from the binary constraint.
Function computeBinaryMaxCosts(P) will also immediately return the total
maximum cost totalSum from the global memory. This could reduce the worst
case complexity of computeBinaryMaxCosts(P) to O(c), where c is the constant time
if the global memory is well maintained. If all of the required functions have been
pre-computed, NC UB(P, xi = v) runs in constant time.

We now show the function AC UB() for computing acub() in Figure 19, which
is similar to function AC LB() in Figure 11. The function again assumes a common
assignment xi = v and a binary constraint Ci,j on xi were given from the input.
The computation of the first three terms: C∅,

⊕
j:j<i maxCj , and Ci(v) in acub()

is the same as ncub(). The fourth term and the fifth term are essentially the same as
in aclb(), and therefore, we adopt the same routine. The only major new requirement
in computing acub() is to compute the last term, which is the maximum costs of
all constraints which are not considered in the function. We compute the term (in
line 2) by utilizing again the two functions computeBinaryMaxCosts(P) and
max(Cij) for the computations of nclb().

Computing maxC∗ in line 2 will use constant time as max(Cij) returns the
maximum costs directly from the maintained global memory. Similar to AC LB(),
line 4 to line 8 (for Qj = min) and line 10 to line 14 (for Qj = max) run in O(d),
where d is the maximum variable domain size.
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1 function AC_UB(P, Cij, xi = v):
2 maxC∗ = totalSum - max(Cij)
3 if Qj == min:
4 minimumCost = +∞
5 for u in Dj:
6 if Cj(u) + Cij(v,u) < minimumCost:
7 minimumCost = Cj(u) + Cij(v,u)
8 return C∅ + N[i] + Ci(v) + [Q[i] - Q(Cj)] + minimumCost + maxC∗

9 if Qj == max:
10 maximumCost = -∞
11 for u in Dj:
12 if Cj(u) + Cij(v,u) > maximumCost:
13 maximumCost = Cj(u) + Cij(v,u)
14 return C∅ + N[i] + Ci(v) + [Q[i] - Q(Cj)] + maximumCost + maxC∗

Fig. 19 Algorithms for implementing acub()

We now define the node and arc consistencies by utilizing the constructed func-
tions.

Definition 11 An MWCSP P is dual quantifier node consistent (DQ-NC) [15] iff:

∀xi ∈ X ,∀v ∈ Di : nclb(P, xi = v) < ub, and
∀xi ∈ X ,∀v ∈ Di : ncub(P, xi = v) > lb

Definition 12 An MWCSP P is dual quantifier arc consistent (DQ-AC) [15] iff:

P is DQ-NC,
∀Ci,j ∈ C,∀v ∈ Di : aclb[Ci,j ](P, xi = v) < ub, and
∀Ci,j ∈ C,∀v ∈ Di : acub[Ci,j ](P, xi = v) > lb

Since DQ-AC requires DQ-NC to be satisfied by definition, DQ-AC is automati-
cally strictly stronger than DQ-NC.

We show the algorithm to enforce DQ-NC/AC in Figure 20, which is
similar to the algorithm for DC-NC/AC. Similarly, we skip explaining func-
tion strengthening() in line 17 and 29 (enclosed in the grey boxes), which
is used to improve the upper and lower bound estimation functions. The function will
be explained in Section 5.4. The algorithm can be seen as another implementation
of the high-level propagation routine in Figure 6. Similar to the previous algorithm
for enforcing DC-NC/AC, we abstract the two pruning/backtracking routines into
the two functions: upper bound pruning and lower bound pruning. For
the implementation of the lower bound estimation function lbaf(P, xj = u)
(in line 8 of Figure 6), the enforcing algorithm for DQ-NC/AC is the same as DC-
NC/AC. The only major difference is on the implementation of the upper bound esti-
mation function ubaf(P, xj = u) (in line 13 of Figure 6), where DQ-NC/AC
directly implements ubaf(P, xj = u) by using function AC UB (in line 36)
and NC UB (in line 39). To enforce DQ-NC only, we skip calling function AC LB and
function AC UB (and their corresponding pruning/backtracking routines), by skipping
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1 function upper_bound_pruning(ap_lb,ub):
2 if ub <= ap_lb:
3 if Qj == min: P = P[xj != u]
4 changed = true
5 if Qj == max: return UB_BTK
6 function lower_bound_pruning(ap_ub,lb):
7 if ap_ub <= lb:
8 if Qj == min: return LB_BTK
9 if Qj == max: P = P[xj != u]

10 changed = true
11 function local_consistency():
12 i = firstx(P)
13 changed = true
14 while changed:
15 changed = false
16

17 strengthening(P) ∗

18 computeArrayOfMinCosts(P)
19 computeArrayOfQuantifiedCosts(P)
20 for j in i..n:
21 for u in Dj:
22 for Cjk in C:
23 ap_lb = AC_LB(P, Cjk, xj = u)
24 upper_bound_pruning(ap_lb,ub)
25

26 ap_lb = NC_LB(P, xj = u)
27 upper_bound_pruning(ap_lb,ub)
28

29 strengthening(P) ∗

30 computeArrayOfMaxCosts(P)
31 computeArrayOfQuantifiedCosts(P)
32 computeBinaryMaxCosts(P)
33 for j in i..n:
34 for u in Dj:
35 for Cjk in C:
36 ap_ub = AC_UB(P, Cjk, xj = u)
37 lower_bound_pruning(ap_ub,lb)
38

39 ap_ub = NC_UB(P, xj = u)
40 lower_bound_pruning(ap_ub,lb)
41

42 return NO_BTK

Fig. 20 The propagation routine for using duality of quantifiers

line 23-24 and line 36-37. Similar to the enforcing algorithm for DC-AC (with similar
reasons), we cannot skip calling NC LB / NC UB if we want to maintain DQ-AC.

We now analyze the time complexity of the propagation algorithm, by first eval-
uating the while loop from line 14 to line 41. We let c to be the constant time,
n to be the number of variables, e to be the number of constraints, and d to be
the maximum variable domain size. The two function upper bound pruning
and lower bound pruning for handling the pruning and backtracking rou-
tines run in O(c). We ignore the function strengthening() and assume it
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runs in unknown time complexity O(s). Function computeArrayOfMinCosts,
computeArrayOfQuantifiedCosts, and computeArrayOfMaxCosts
run in O(nd). If function computeBinaryMaxCosts(P) in line 32 computes
the maximum costs of all binary constraints and their summation totalSum
via scanning all tuples of all binary constraints, the function will run in the
worst case O(ed2). Note that in practice, we could reduce the complexity of
computeBinaryMaxCosts(P) by updating the maximum costs of binary con-
straints incrementally. We only need to update binary constraints which have a vari-
able with values being pruned/assigned. Each query to NC LB() and NC UB() run
in O(c) and each query to AC LB() and AC UB() run in O(d). From the algorithm,
we can see that NC LB() and NC UB() will be queried for each possible value as-
signments xj = u from the set of future unassigned variables. Their overall running
time will be bounded by O(nd). For AC LB() and AC UB(), the function will be
queried for all of the possible binary constraints and all possible value assignments.
The overall running time for the function will be in O(ed2). Overall to maintain DQ-
AC, the time complexity for running the while loop once is: O(s+nd+ed2) which is
bounded by O(s+n2d2). In the worst case, we could have the propagation while loop
runs for nd times. Therefore, the worst case time complexity is O(snd+n2d2+end3)
which is bounded by O(snd+ n3d3). If we want to maintain DQ-NC, the time com-
plexity for running the while loop once is still O(s + nd + ed2) due to the require-
ment to compute computeBinaryMaxCosts(P). Suppose we now choose to
update the maximum costs of binary constraints (and their total sum) incrementally.
If there are r binary constraints constraining on variables with values being pruned,
computeBinaryMaxCosts(P) would run in O(rd2). The time complexity to
maintain DQ-NC for running the loop once would be changed to O(s+nd+ rd2). In
the worst case, we could have the propagation while loop runs for nd times. A naive
calculation for the worst case complexity would give O(snd+ n2d2 + rnd3), where
r is an average number of binary constraints need to be updated per execution of the
while loop.

5.4 Strengthening Consistencies by Projection/Extension

Consistency algorithms for Weighted CSPs use an equivalence preserving transfor-
mation called projection [9] to move costs from higher arity constraints to lower arity
ones to extract and store bound information. Some of these consistency algorithms
also use extension [9], which is the inverse of projection, to increase the consistency
strength. We propose to re-use Weighted CSP consistencies, especially the parts re-
lated to projections and extensions, to strengthen [15] the approximating functions
for MWCSPs. We will first give an introduction for projections before showing how
we utilize the consistencies for MWCSPs.

Suppose now we have a constraint CS on the set S of variables, and the costs in-
curred by CS is at least c for any assignments on CS . We can easily infer CS must be
(at least) giving a cost of c. We can extract c from CS to C∅. The operation perform-
ing the extraction is called 0-projections [36], which is an operation transforming
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(CS , C∅) to (C ′S ,C ′∅) by projecting a cost of c s.t.:

C ′S(l[S]) = CS(l[S])	 c
C ′∅ = C∅ ⊕ c

for all possible complete assignments l. Similarly, if we have a constraint CS on the
set S of variables, and the costs incurred by CS is at least c for any assignments l
where xi = a ∈ l on CS , we can extract c from CS [l] to Ci(a). The operation per-
forming the extraction is called 1-projections [36], which is an operation transforming
(CS , Ci(a)) to (C ′S ,C ′i(a)) by projecting a cost of c s.t.:

C ′S(l[S]) = CS(l[S])	 c, if xi = a ∈ l
= CS(l[S]), if xi = a /∈ l

C ′i(v) = Ci(v)⊕ c, if v = a

= Ci(v), if v 6= a

for all possible complete assignments l. Recall function nclb() extracts minimum
costs from unary constraints. Performing 0-projections on unary constraints before
computing nclb() helps us to pre-compute these minimum costs. Furthermore, by
using 1-projections on binary constraints, we may further strengthen nclb() as costs
from binary constraints are being transferred to unary constraints. In function aclb,
not all binary constraints are taken into account. If we are able to extract costs from
binary constraints to unary constraints by 1-projections, we could also make aclb a
tighter bound. Note that we can also define general k-projections where k is an arbi-
trary number. However in practice, consistency algorithms usually focus on utilizing
0-/1-projections.

Weighted CSPs consistencies consist of two kinds of conditions: one for pruning
and one for projection/extension. However, the general pruning conditions in WCSPs
are unsound with respect to MWCSPs. In WCSPs, if an assignment xi = v has a
cost of k, we can prune the assignment. However in MWCSPs, we cannot directly
prune value v. We have to further consider quantifier information. If Qi = max
and we prune the value, the pruning may change the overall A-costs of the problem.
Instead of pruning the value, we should perform backtrack (or prune all values to
trigger backtrack in QCSPs) according to Table 1. Therefore, we adopt only their
projection/extension conditions so as to strengthen DC-NC/AC and DQ-NC/AC. The
projection/extension conditions for NC*, AC*, and FDAC* [17,16] are as follows:

proj-NC*: ∀Ci,∃v ∈ Di : Ci(v) = 0

proj-AC*: proj-NC*, and
∀Ci,j ,∀vi ∈ Di,∃vj ∈ Dj : Ci,j(vi, vj) = 0, and
∀Ci,j ,∀vj ∈ Dj ,∃vi ∈ Di : Ci,j(vi, vj) = 0

proj-FDAC*: proj-AC*, and
∀Ci,j : i < j, ∀vi ∈ Di,∃vj ∈ Dj : Ci,j(vi, vj)⊕ Cj(vj) = 0

The main idea of these projection conditions is to require certain tuples of unary
and/or binary constraints after transformation by using consistency algorithms have
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a cost of 0, i.e. the minimum costs in Weighted CSPs. To satisfy the requirements,
consistency algorithms in Weighted CSPs will utilize projections (and further exten-
sions which are the reverse of projections for proj-FDAC*) to transfer costs from
higher arity constraints to lower arity constraints. Note that in terms of definition,
proj-FDAC* has stronger requirements/conditions than proj-AC* and proj-AC* has
stronger requirements/conditions than proj-NC*. Similar to classical CSPs, the en-
forcement algorithm for enforcing stronger consistencies will usually run slower.

The enforcing algorithm to enforce these conditions have long been devel-
oped and discussed in the Weighted CSP community. In this section, we will dis-
cuss on how to adopt the enforcing algorithms for proj-NC*, proj-AC*, and proj-
FDAC* from the Weighted CSP framework in our implementations. Figure 21, 22,
and 23 show three functions: PROJ-NC*, PROJ-AC*, and PROJ-FDAC*, which
are used to enforce proj-NC*, proj-AC*, and proj-FDAC* respectively. When enforc-
ing DC-NC/AC and DQ-NC/AC, the appropriate enforcing algorithms: PROJ-NC*,
PROJ-AC*, or PROJ-FDAC* will be selected and invoked via calling function
strengthening (line 19 and 31 in Figure 17 and line 17 and 29 in Figure 20).
Since we directly adopted these algorithms from Weighted CSP framework, we will
show how to modify these algorithms to cope with MWCSPs.

1 function PROJ-NC*(P):
2 for Ci in C:
3 minCost = +∞
4 for u in Di:
5 if Ci(u) < minCost: minCost = Ci(u)
6 C∅ = C∅ + minCost
7 for u in Di:
8 Ci(u) = Ci(u) - minCost

Fig. 21 Algorithms to enforce proj-NC*

Function PROJ-NC* enforces proj-NC* by transferring the minimum costs of
unary constraints to C∅ and the function runs in O(nd), where n is the number of
variables and d is the maximum domain size. Similarly, function PROJ-AC* en-
forces proj-AC* by transferring the minimum costs of binary constraints to unary
constraints, and further enforce proj-NC* by calling PROJ-NC*. The runtime of
the function is in O(ed2), where e is the number of binary constraints in the
propagation queue propQueue and d is the maximum domain size. For func-
tion PROJ-FDAC*, it first enforces proj-AC* by calling function PROJ-AC*. Then,
it maintains proj-FDAC* by a series of extensions (from unary constraints) and pro-
jections (from binary constraints). The runtime of the algorithm is again in O(ed2),
where e is the number of binary constraints in the two propagation queues and
d is the maximum domain size. Note that the above time complexity estimation
assumes the procedure to find and add binary constraints to propFDACQueue
runs in constant time (line 9 and 18 in Figure 22 and line 14 in Figure 23). In-
stead of checking whether we need to maintain proj-AC*/proj-FDAC* for all bi-
nary constraints every time, PROJ-AC*/PROJ-FDAC* maintains a propagation
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1 function PROJ-AC*(P):
2 for Cij in propQueue:
3 for u in Di:
4 minCost = +∞
5 for v in Dj:
6 if Cij(u,v) < minCost: minCost = Cij(u,v)
7 if minCost > 0:
8 if Ci(u) == 0:
9 for k in [1..i-1]: propFDACQueue.append(Cki)

10 Ci(u) = Ci(u) + minCost
11 for v in Dj: Cij(u,v) = Cij(u,v) - minCost
12 for v in Dj:
13 minCost = +∞
14 for u in Di:
15 if Cij(u,v) < minCost: minCost = Cij(u,v)
16 if minCost > 0:
17 if Cj(v) == 0:
18 for k in [1..j-1]: propFDACQueue.append(Ckj)
19 Cj(v) = Cj(v) + minCost
20 for u in Di: Cij(u,v) = Cij(u,v) - minCost

21 if DQ==true: updateBinaryMaxCost(Cij) ∗

22 propQueue = []
23 PROJ-NC*(P)

Fig. 22 Algorithms to enforce proj-AC*

queue propQueue(in line 2 in Figure 22) / propFDACQueue(in line 5 in Fig-
ure 23) for storing all binary constraints which may not satisfy proj-AC*/proj-
FDAC*. To maintain propQueue/propFDACQueue, we will need to further
modify function upper bound pruning and lower bound pruning in both
Figure 17 and 20. When a value v for a variable xi is being pruned in func-
tion upper bound pruning/ lower bound pruning, all binary constraints
related to the variable will be added to the array propQueue, i.e. Ci,j , j > i and
alsoCj,i, j < i. For the array propFDACQueue, we will only add binary constraints
Cj,i where j < i.

After enforcing proj-NC* (proj-AC* resp.), the minimum costs of all unary
(unary & binary resp.) constraints must be zero. Therefore, it is unnecessary for us to
compute the minimum costs for a unary (unary and binary resp.) constraint again in
NC LB, AC LB, NC UB, and AC UB if we have already enforced proj-NC* (proj-AC*
resp.). We can then further simplify function computeArrayOfMinCosts
and computeArrayOfQuantifiedCosts in Figure 10. Note that af-
ter enforcing projection/extension conditions, the maximum costs for a
unary/binary constraint may be changed, and we have to re-compute
these maximum costs. For unary constraints, the re-computations always
occur in function computeArrayOfQuantifiedCosts (and also
computeArrayOfMaxCosts for duality of quantifiers routine) after in-
voking the routine strengthening. For binary constraints, their maximum
costs will only be used in acub for the duality of quantifier approach. Func-
tion updateBinaryMaxCost(Cij) is added (enclosed in the grey boxes in
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1 function PROJ-FDAC*(P):
2 PROJ-AC*(P)
3 for j in [n .. 1]:
4 for i in [j-1 .. 1]:
5 if Cij in propFDACQueue:
6 P = []
7 E = []
8 for u in Di:
9 minCost = +∞

10 for v in Dj:
11 if Cij(u,v) + Cj(v) < minCost: minCost = Cij(u,v) + Cj(v)
12 P[u] = minCost
13 if P[u] > 0 and Ci(u) == 0:
14 for k in [1..i-1]: propFDACQueue.append(Cki)
15 for v in Dj:
16 maxCost = -∞
17 for u in Di:
18 if P[u] - Cij(u,v) > maxCost: maxCost = P[u] - Cij(u,v)
19 E[v] = maxCost
20 for v in Dj:
21 Cj(v) = Cj(v) - E[v]
22 for u in Di: Cij(u,v) = Cij(u,v) + E[v]
23 for u in Di:
24 Ci(u) = Ci(u) + P[u]
25 for v in Dj: Cij(u,v) = Cij(u,v) - P[u]
26 minCost = +∞
27 for u in Di:
28 if Ci(u) < minCost: minCost = Ci(u)
29 C∅ = C∅ + minCost
30 for u in Di: Ci(u) = Ci(u) - minCost

31 if DQ==true: updateBinaryMaxCost(Cij) ∗

32 propFDACQueue = []

Fig. 23 Algorithms to enforce proj-FDAC*

Figure 22 and Figure 23) to update the maximum costs for the binary constraint
Cij. Note that the function should only be invoked if duality of quantifier approach
is used. We add a global flag DQ to distinguish the two dualities in our solver, where
the flag is set to true if duality of quantifier approach is enabled.

Suppose we were given a binary constraint Ci,j where xi is a min variable and
xj is a max variable. Notice that when the enforcing algorithm PROJ-FDAC* (in
Figure 23) enforces proj-FDAC* for Ci,j , extension operations may transfer unary
costs from Cj (line 21) to Ci,j and projection operations may transfer unary costs
from Ci,j to Ci (line 24). Decreasing unary costs for max variables and at the same
time increasing unary costs for min variables may weaken the approximating func-
tions. Weakening the approximating function nclb and aclb may give a looser lower
bound while weakening the approximating function ncub (in the duality of quantifier
approach) may give a looser upper bound. Recall that we also utilize nclb and aclb
for computing upper bounds in the duality of constraint method. Therefore, we also
risk computing looser upper bounds.
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The reason behind is that proj-FDAC* will also perform extensions, which are the
reverse of projections, to transfer costs from unary constraints to binary constraints.
If we transfer costs from unary constraints to binary constraints and then further per-
form projections transferring costs from these binary constraints to other unary con-
straints, we can see that costs are being transferred between unary constraints (by us-
ing binary constraints). Note that the transformation is a cost equivalence preserving
operation, i.e. the total costs of a complete assignment remains unchanged. Therefore,
incorporating such transformation in our framework does not affect the soundness of
our proposed algorithm. However, transferring costs from max variable to min vari-
able may weaken the approximation functions we defined for the framework. One
way to tackle and ease the issue is to use a different ordering for the variables when
enforcing proj-FDAC*, with max variables first. The idea is that if max variables are
ordered before the min variables, we can avoid transferring unary costs from max
variables to min variables. Note that applying the algorithm to enforce proj-FDAC*
on a different variable ordering is still costs equivalence preserving (i.e. soundness
still holds). To implement the modification, we only need to add a procedure in the
root node during preprocessing to create a new ordering to order max variables first.
Note that the for-loops in line 3, 4, and 14 in Figure 23, and also line 9 and 18 in
Figure 22 will need to be referenced to the newly created ordering. One interesting
future work is to devise a variable ordering heuristic for proj-FDAC* which could
order the variable dynamically depending on the quantifiers and constraint costs.

We now re-define DC-NC, DC-AC, DQ-NC, and DQ-AC, to allow users to plug
in general projection/extension conditions τ .

Definition 13 An MWCSP P is DC-NC[τ] (DC-AC[τ] resp.) iff P is DC-NC (DC-
AC resp.), and all projection/extension conditions τ for both P and the normalized
dual problem PN are satisfied.

Definition 14 An MWCSP P is DQ-NC[τ] (DQ-AC[τ] resp.) iff P is DQ-NC (DQ-
AC resp.), and all the projection/extension conditions τ for P are satisfied.

Previous work [21] shows experimental results on an implementation of DQ-NC[proj-
NC*] and DQ-AC[proj-AC*], where DQ-NC[proj-NC*] and DQ-AC[proj-AC*] are
named as node and arc consistency respectively.

5.5 Stronger Solution Definitions

This section discusses the scopes and limitations of our techniques on solving MWC-
SPs for the other two stronger solved levels: weakly solved and strongly solved.

In terms of space, the solution sizes for solving MWCSPs ultra-weakly, weakly,
and strongly vary from O(n), O((n−m)dm), to O(dn) respectively, where n is the
total number of variables, m ≤ n is the number of variables owned by adversaries,
and d is the maximum domain size of the MWCSP. A direct consequence is that we
need exponential space to store weak/strong solutions during search, and most often,
compact representations to represent weak/strong solutions are more desirable.

In terms of prunings in branch and bound tree search, a sound pruning condi-
tion when solving a weaker solution concept may not hold in stronger ones. This is
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caused by the removal of the assumption of optimal/perfect plays when dealing with
stronger solution concepts. For example in alpha-beta prunings, when the min player
obtains an A-cost which is lower than the lb (i.e. max player’s last found best), we
cannot immediately backtrack if we want to tackle weakly solved solutions, where
we assume the max player is the adversary. The reason behind is that we cannot as-
sume the max player must play a perfect move. We have to consider all moves for
the max player. The situation is similar if we assume the min player is the adversary.
By similar reasoning and inductions, we cannot perform prunings/backtrackings for
the ≤ lb column (≥ ub column resp.) in Table 1 if we want to tackle weakly solved
solutions, assuming the max player (min player resp.) is the adversary. For solv-
ing strong solutions, the situation is even worse. We cannot assume optimal plays
for both players. Therefore, we have to find A-costs for all sub-problems, and all
prunings/backtrackings conditions in Table 1 cannot be used. In general, the fewer
sound pruning/backtracking conditions available, the larger the search space we have
to search. By using tree search, we can observe finding stronger solutions is much
harder than weaker ones.

When tackling real-life problems, one can ask for solutions which solve the prob-
lem in an intermediate level. For example, if the adversaries have multiple optimal
strategies, we can require solutions containing responses to every different optimal
choice the adversaries may choose. In this case, the solved level lies between ultra-
weak and weak. One way to handle is to relax the bound updating procedure for the
lower bound (upper bound resp.) in alpha-beta pruning (Line 8 and 10 in Figure 3),
where we assume the max (min resp.) player is the adversary. When a larger lower
bound lb (smaller upper bound ub resp.) is found, we update the lower bound to lb−1
(upper bound to ub + 1 resp.). The major focus of this paper is to give consistency
notions to improve the search in finding the best-worst case, i.e. ultra-weak solutions,
of a game.

It is also worthwhile to note that ultra-weak solutions provide the value of the
initial state and the optimal play of the first step. If we are allowed to re-compute
ultra-weak solutions after every step/move from our adversary, we could still achieve
an optimal strategy. In this case, we avoid building exponential weak-solutions by
re-computing ultra-weak solutions multiple times (i.e. trading time for space).

6 Performance Evaluation

In this section, we compare our solver in seven modes: Alpha-beta pruning, DC-
NC[proj-NC*], DQ-NC[proj-NC*], DC-AC[proj-AC*], DQ-AC[proj-AC*], DC-
AC[proj-FDAC*], and DQ-AC[proj-FDAC*] [15]. Values are labeled in static lexi-
cographic order. We generate 20 instances for each benchmark’s particular parameter
setting. We set k =∞ in all of the benchmarks. To ease our implementation,∞ will
be translated to a large enough constant. Results for each benchmark are tabulated
with the average time used (in sec.) and average number of tree nodes encountered.
We take average for solved instances only. If there are any unsolved instances, we
give the number of solved instances beside the average time (superscript in brack-
ets). Winning entries are highlighted in bold. Note that even if an entry runs slower
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or encounter more search nodes than another entry, the entry will still be winning
if it solves more instances than the others. A symbol ‘-’ represents all instances fail
to run within the time limit. The experiment is conducted on a Core2 Duo 2.8GHz
with 3.2GB memory. We have also performed experiments on QeCode, a solver for
QCOPs [4], by transforming the instances to QCOPs according to the transformation
in previous work [21].

6.1 Randomly Generated Problems

We re-use benchmark MWCSP instances by Lee, Mak, and Yip [21]. The random
MWCSP instances are generated with parameters (n, d, p), where n is the number
of variables, d is the domain size for each variable, and p is the probability for a bi-
nary constraint to occur between two variables. There are no unary constraints which
makes the instances harder, and the costs for each binary constraint are generated
uniformly in [0..30]. Quantifiers are generated randomly with half probability for
min (max resp.), and the number of quantifier levels vary from instances to instances.
Time limit for the benchmark is set to 900 seconds, and Table 2 shows the results.

6.2 Graph Coloring Games

We re-use benchmark graph coloring game instances by Lee, Mak, and Yip [21]. We
represent colors by numbers and the graph is numbered by two players. We partition
the nodes into two setsA andB. Player 1 (Player 2 resp.) will number setA (B resp.).
The goal of player 1 is to maximize the total difference between numbers of adjacent
nodes, while player 2 wishes to minimize. The aim is to help player 1 extracting
the best-worst case. The instances are generated with parameters (v, c, d), where v is

Table 2 Randomly Generated Problem

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes

(12, 5, 0.4) 68.20 5,967,461 5.89 131,468 2.54 30,165 2.13 20,397
(12, 5, 0.6) 52.05 4,782,541 4.63 101,690 2.61 26,093 2.24 16,178
(14, 5, 0.4) 263.04(18) 19,770,953 52.72 948,783 19.33 198,476 14.82 117,155
(14, 5, 0.6) 271.72(17) 17,249,858 70.12 1,185,087 29.97 246,459 23.11 143,197
(16, 5, 0.4) 517.24(2) 26,269,025 332.65(19) 4,617,612 121.78 1,047,900 102.82 706,913
(16, 5, 0.6) 693.31(2) 36,315,673 461.68(16) 6,157,070 259.51 1,816,642 208.52 1,054,326
(18, 5, 0.4) - - 624.15(5) 5,850,276 424.34(9) 1,874,750 369.48(12) 1,158,340
(18, 5, 0.6) - - - - 555.48(5) 1,890,490 515.69(9) 1,127,819

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes

(12, 5, 0.4) - – 3.68 158,179 3.23 53,845 4.27 58,619
(12, 5, 0.6) - - 2.85 118,401 3.24 41,596 4.17 45,698
(14, 5, 0.4) - - 33.39 1,135,378 26.20 369,185 41.74 482,053
(14, 5, 0.6) - - 46.81 1,510,946 45.85 450,407 68.63 522,715
(16, 5, 0.4) - - 217.13 5,780,075 141.07 1,654,538 173.96 1,745,527
(16, 5, 0.6) - - 364.51(19) 9,401,844 341.71 3,071,036 362.12(17) 2,659,294
(18, 5, 0.4) - - 381.96(5) 7,007,289 582.85(13) 4,297,854 466.30(8) 2,576,363
(18, 5, 0.6) - - 810.99(3) 14,922,549 544.37(3) 3,271,773 389.58(4) 1,042,342
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Table 3 Graph Coloring Game

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes

(14, 4, 0.4) 19.88 1,572,978 6.71 122,266 3.20 37,252 1.90 16,732
(14, 4, 0.6) 24.12 1,730,473 10.38 185,111 5.88 59,359 3.48 23,515
(16, 4, 0.4) 167.75 10,050,800 48.37 688,200 22.67 221,484 12.09 92,875
(16, 4, 0.6) 166.83 9,213,029 45.71 625,944 27.03 212,934 15.64 85,920
(18, 4, 0.4) 784.47(3) 33,914,968 288.90 2,839,962 114.63 792,220 65.58 357,457
(18, 4, 0.6) - - 350.29 3,400,265 163.70 993,099 80.06 343,146
(20, 4, 0.4) - - 653.32(8) 5,559,267 545.54(12) 2,206,506 413.91 1,168,221
(20, 4, 0.6) - - - - 724.17(4) 2,498,710 532.10(19) 1,133,238

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes

(14, 4, 0.4) - - 4.52 170,843 3.36 63,298 3.74 53,722
(14, 4, 0.6) - - 7.29 269,179 6.36 99,972 6.88 74,187
(16, 4, 0.4) - - 34.43 1,002,145 23.21 363,539 24.36 281,229
(16, 4, 0.6) - - 33.82 949,861 29.19 352,694 31.99 280,426
(18, 4, 0.4) - - 204.86 4,095,993 118.65 1,315,346 140.95 1,207,566
(18, 4, 0.6) - - 267.23 5,295,433 180.38 1,711,948 182.66 1,270,797
(20, 4, 0.4) - - 542.40(10) 9,356,227 538.00(13) 3,990,062 459.01(12) 2,390,484
(20, 4, 0.6) - - 793.10(4) 13,240,872 761.80(5) 4,698,459 689.72(4) 2,952,531

Table 4 Generalized Radio Link Frequency Assignment Problem

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes

(0, 24, 4, 0.2) - - 52.98 275,929 17.32 32,088 14.46 20,396
(1, 24, 4, 0.2) - - 86.38 442,362 50.54 74,182 53.85 55,988
(0, 24, 4, 0.4) - - 148.87 828,286 105.95 295,743 128.01 286,122
(1, 24, 4, 0.4) - - 168.54 905,277 122.50 289,965 154.00 277,569
(1, 22, 6, 0.2) - - 618.93 3,580,885 307.58 352,439 309.63 299,361
(0, 24, 6, 0.2) - - 1230.33(19) 6,822,412 500.18 738,245 479.50 651,762

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes

(0, 24, 4, 0.2) - - 28.15 279,590 15.25 35,455 11.77 23,880
(1, 24, 4, 0.2) - - 45.62 449,164 50.75 77,286 47.08 62,734
(0, 24, 4, 0.4) - - 96.55 1,046,150 101.49 451,090 208.79 692,470
(1, 24, 4, 0.4) - - 115.26 1,205,458 109.16 348,040 224.62 576,335
(1, 22, 6, 0.2) - - 338.42 3,719,348 374.34 374,385 309.96 368,643
(0, 24, 6, 0.2) - - 682.60(19) 7,224,677 539.69 803,087 434.99 812,048

an even number of nodes in the graph, c is the range of numbers allowed to place,
and d is the probability of an edge between two vertices. Player 1 (Player 2 resp.) is
assigned to play the odd (even resp.) numbered turns, and the node corresponding to
each turn is generated randomly. Time limit is set to 900 seconds, and Table 3 shows
the results.

6.3 Generalized Radio Link Frequency Assignment Problem (GRLFAP)

We generate the GRLFAP according to two small but hard CELAR sub-instances [8],
which are extracted from CELAR6. All GRLFAP instances are generated with param-
eters (i, n, d, r), where i is the index of the CELAR sub-instances (CELAR6-SUBi),
n is an even number of links, d is an even number of allowed frequencies, and r
is the ratio of links placed in unsecured areas, 0 ≤ r ≤ 1. For each instance, we
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randomly extract a sequence of n links from CELAR6-SUBi and fix a domain of d
frequencies. We randomly choose b(r × n+ 1)/2c pairs of links to be unsecured. If
two links are restricted not to take frequencies fi and fj with distance less than t, we
measure the costs of interference by using a binary constraint with violation measure
max(0, t−|fi−fj |). We set the time limit to 7200 seconds. Table 4 shows the results.

6.4 Results and Discussions

For all benchmarks, all six consistencies are significantly faster and stronger than
alpha-beta pruning.

Comparing the two duality approaches, we observe that duality of constraints
(DC) has a smaller search space than duality of quantifiers (DQ). We conjecture
for any projection/extension conditions τ , DC-NC[τ ] (DC-AC[τ ] resp.) could be
stronger than DQ-NC[τ ] (DQ-AC[τ ] resp.). Note that enforcing projection/exten-
sion conditions on DQ-NC/DQ-AC may strengthen one approximation function, and
weaken the other at the same time. DC-NC/DC-AC extracts costs from different
copies of constraints and resolves this issue.

For all benchmarks, DQ-NC[proj-NC*] runs faster than DC-NC[proj-NC*]. In
almost all instances of randomly generated problems and the graph coloring game,
DC-AC[proj-(FD)AC*] runs faster than DQ-AC[proj-(FD)AC*], with DC-AC[proj-
FDAC] the fastest. A notable exception is (18, 5, 0.4) in randomly generated prob-
lems, where DQ-AC[proj-AC*] manages to solve more instances than DC-AC[proj-
AC*] and even DC-AC[proj-FDAC*]. However, for instances (in that parameter set-
ting) which could be solved by both DQ-AC[proj-AC*] and DC-AC[proj-FDAC*]
(a total of 11 instances), we observe that DC-AC[proj-FDAC*] runs significantly
faster. In GRLFAP, DQ-NC[proj-NC*] runs faster than the others for smaller in-
stances (except (0, 24, 4, 0.2)) and stronger consistencies tend to be faster for larger
ones. Enforcing proj-FDAC* is more computationally expensive than proj-AC* and
proj-NC*, and implementing duality of constraints requires implementing two copies
of constraints. Therefore, stronger consistencies are worthwhile for larger instances,
but not for smaller ones due to the large computational over-head.

It is worth noting in some particular instances, DQ[proj-FDAC*] prunes less
than DQ[proj-AC*]. This could be explained by the fact that adding stronger projec-
tion/extension conditions from Weighted CSPs naively does not always strengthen
our approximation functions. We may have to further study and consider quantifier
information.

All QCOP instances for even the smallest parameter settings for all benchmarks
fail to run within the time limit. QCOPs are, in fact, more general [21] than MWC-
SPs. By viewing a more specific problem, it is natural for us to devise consistency
techniques outperforming QeCode.

One interesting observation is that we may be able to combine the two duality
approaches to form a even stronger level of consistencies. However, maintaining a
stronger level of consistencies by naively combining the two enforcing algorithms
could incur an expensive overhead on the propagation routine and increases the over-
all runtime. We have to balance the amount of time spending on search and propa-
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gations. In this paper, we therefore only allow the solver to choose either duality of
constraints or duality of quantifiers.

7 Concluding Remarks

Our contributions are five-fold. First, we formally define the Minimax Weighted CSP
framework for modeling optimization problems with adversaries. Our work allows us
to model and solve soft constraint problems with adversaries, such as the graph col-
oring game and the generalized radio link frequency assignment problem. Second,
we implement a complete solver incorporating alpha-beta pruning into branch-and-
bound, and propose sufficient pruning and backtracking conditions which serve as a
basis for our consistency notions. Third, we define and implement node and (full di-
rectional) arc consistency notions to reduce the search space of an alpha-beta search
for Minimax Weighted CSPs, by approximating lower and upper bounds of the cost
of the problem. Lower bound computation employs standard estimation of costs in
the sub-problems and we propose two approaches based on the Duality Principle
to estimate upper bounds. Fourth, we show how to adopt and re-use Weighted CSP
consistencies to strengthen our lower and upper approximation functions, and also
discuss capabilities and limitations of our approach on other stronger solution con-
cepts. Fifth, we perform experiments on comparing basic alpha-beta pruning and the
six consistencies from the two dualities.

There are also two closely related frameworks, where both tackle constraint prob-
lems with adversaries. Brown et al. propose adversarial CSPs [7], which focuses on
the case where two opponents take turns to assign variables, each trying to direct the
solution towards their own objectives. Another related work is Stochastic CSPs [34],
which can represent adversaries by known probability distributions. Their work fo-
cuses on seeking actions to minimize/maximize the expected cost for all the possible
scenarios. Our work is similar in the sense that we are minimizing/maximizing costs
for the worst case scenario.

Other possible future work includes: incorporating high arity soft table/global
constraints similar to those for Weighted CSPs [18,19,22], value and variable or-
dering heuristics [20], theoretical comparisons on different consistency notions,
and tackling stronger solutions. Devising online/distributed algorithms for Minimax
Weighted CSPs is also an interesting future work.
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