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Abstract— Transmission line switching is an important op-
erational action in power transmission systems, and has been
successfully applied to reduce generation costs and eliminate
congestions. Prior work mainly focus on tackling the Optimal
Transmission Switching problem based on steady states. This
paper studies how to generalize these results when transmission
switching is performed on highly congested systems. It proposes
an optimization model to find the optimal line to switch and the
corresponding optimal control parameters. The results show
that optimizing the exciter and stabilizer control settings is
critical to ensure stability and the optimization model can be
solved within a few minutes. The model was validated with
respect to a simulation model and is shown to an accuracy in
the order of 10−3 (deg) accurate in rotor angle computations.

Index Terms— power systems, line switching, transient sta-
bility, optimal control, optimization, power system stabilizer

I. INTRODUCTION

Transmission line switching is a control action in electrical
power systems that has generated increasing attention in
recent years. Opening and closing transmission lines change
the topology of the grid, redistribute power flows and change
the operational state of the system. The control action has
been proposed to address voltage issues in the grid, reduce
generation costs [1]–[3], eliminate congestions, and avoid
violating operational constraints [4].

Significant research has devoted to designing algorithms
for Optimal Transmission Switching (OTS) [3]. The goal in
OTS is to find the best (sequence of) lines to switch off in
order to minimize generation costs. This line of research
almost exclusively focuses on analyzing the power flow
in the steady-states before and after the switchings. From
a mathematical standpoint, the OTS problem for finding
the optimal line(s) for single/multiple line switching(s) is a
non-convex Mixed-Integer Non-Linear Program (non-convex
MINLP), which is computationally challenging. For this
reason, most OTS studies replace the non-convex AC power
flow equations by the linear DC power flow equations [3],
[5]–[8]. This reduces the computational complexity, as the
DC-OTS problem can be modeled as a Mixed-Integer Linear
Program (MILP). Unfortunately, there is no guarantee that
the resulting solution can be transformed into an AC-feasible
solution [9]. To overcome this limitation, recent work has
advocated the use of AC formulations (AC-OTS) or the use
of tighter approximations and relaxations [1], [2], [10].
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AC-OTS formulations produce an optimal AC-feasible
steady state after switchings, but do not guarantee transient
stability when the congestion level goes beyond traditional
n-1 reliability analysis. Our simulation experiments on the
IEEE-39 test case indicate the more congested the network
is, the more difficult it becomes to ensure transient stability
of OTS. Figure 1 depicts simulation results when line (2,25)
is open for a congested case of the IEEE 39-bus test sys-
tem [11], [12] taken from [13]. In the first few seconds, the
system seems to maintain stability. However, the system is
insufficient damped, causing oscillatory instability (slipping
of generator poles). A loss of generator synchronism (the
left plot) can be seen after the fifth second. Power utilities
routinely check system stability under peak loads, via simu-
lations on various faulty scenarios (e.g. single line / three
phase faults). However, these routines are not exhaustive
and mainly served for instability prevention during faults.
With growing penetration of renewable energy, transmission
switching is often presented as a flexible control action
and it becomes important to have automatic routines and
controllers that jointly optimize operational decisions and
control settings.

This paper is a step in remedying this situation. It proposes
an automatic routine which actively considered transient
stability during optimization. Its key contribution is a nonlin-
ear optimization model for Transient-Stable Line Switching
(TSLS) whose role is to complement an AC-OTS model:
For each contemplated line switching, the TSLS model
determines set-points for its control variables in order to
ensure transient stability or determine transient instability, in
which case the switching is rejected. The TSLS optimization
model uses a trapezoidal discretization of the differential
algebraic equations for a 2-axis generator model with an
automatic voltage regulator (AVR) consisting of an exciter
and a stabilizer. The TSLS model features two types of
control variables: generation dispatches and excitation pa-
rameters, and its objective function minimizes the rotor angle
accelerations weighted by time in order to damp and stabilize
the system.



The TSLS model was evaluated on the classical IEEE 10-
machine 39-bus system [11], [12] with different congestion
scenarios from the NESTA benchmark [13] to capture peaks
in demand. The key findings from the experiments can be
summarized as follows:

1) The more congested the system is, the more difficult it
is to ensure transient stability.

2) The variables controlling the set-points of the exciter
and the stabilizer are critical to ensure transient stability.
With fixed constants for these parameters, transient
stability cannot be obtained for the most congested case.

3) The TSLS optimization results were validated against
POWERWORLD simulations and exhibits an average
error in the order of 10−3 degree for rotor angles.

4) The TSLS optimization model is solved with one minute
for the coarser, but highly accurate, discretization.

These results seem to indicate that optimal transient-stable
line switching may become a practical tool for deploying line
switching, complementing the significant progress achieved
in the last decade.

II. RELATED WORK

Our work is closely related to the transient-stable optimal
power flow problem, first proposed by Gan et al. [14]. The
problem was later extended to multi-contingency settings in
[15] and extended to power system restorations [16]. All of
the above approaches utilize the classical model with Swing
equations to reason on transient stability. Our work extends
these works by further considering the more complex 2-Axis
Model with automatic voltage regulation (AVR): including
an exciter and a stabilizer (PSS) during optimization. Our
work is also related to techniques improving stability during
transmission loop closures in normal operating conditions,
e.g., techniques on reducing rotor shaft impacts and standing
phase angles [17]–[19].

III. BACKGROUND

The dynamic response of a power system after a distur-
bance can be abstractly written and described by [15], [21]:

ẋ = f(x, y), 0 = g(x, y) (1)

where f(•) represents a set of first-order differential equa-
tions describing the power system dynamics, and g(•) rep-
resents a set of algebraic equations describing the passive
equipments. Vector x captures the short-term dynamic vari-
ables and y is a vector of algebraic state variables. Given an
initial condition for variables x and y, we then compute the
transient states of the network over time.

In this paper, we mainly focus on generator electro-
mechanical dynamics and phenomenon within a time horizon
from a few seconds up to half of a minute. The remaining
equipments in the power transmission network, including
transmission lines, circuit breakers, and loads are modeled
as passive equipments. We now describe the technical details
of the generator dynamics in our model.

A. Generator Model: 2-Axis Model

This paper uses the two-axis model [22] to capture the
generator swing dynamics, starting with the swing equations:

dδi

dt
= ωi − ω0,

2Hi

ω0

dωi

dt
= pim − pie −Diωi

where Hi, δi, Di, ωi, and ω0 denote the inertia constant,
rotor angle, the damping coefficient, the angular velocity, and
the nominal angular velocity of a generator i. The nominal
angular velocity is assumed constant for all generators at
60Hz (i.e., ω0 = 2π60). pim and pie represent the mechanical
and electrical powers acting on the rotor of generator i, δi

and ωi are short-term dynamic variables, and pim and pie
are algebraic state variables. In steady states, the mechanical
power is assumed to be equal to the electrical power and the
rotor angles of all generators remain constant (i.e., dωi

dt =
0,∀i ∈ G). The angular velocity ωi is traditionally defined
as an offset with respect to the nominal angular velocity
ω0, which allows us to drop the ω0 term (first equation).
Traditionally, D is an implicit constant use to approximate
damping effects on windings and stabilizers. Since our model
includes an exciter and a stabilizer, the term Diwi in the
second equation can be ignored. In the two-axis model,
the active (pie) and reactive (qie) power of generator i can
be described directly in terms of the generator stator emfs,
leading to rotor flux components in two axes: the direct axis
(d-axis, Eid) and the quadrature axis (q-axis, Eiq):

pie =
EiqV

i sin(δi − θi)
X

′i
d

+
EidV

i cos(δi − θi)
X ′i
q

+

(V i)2(X
′i
d −X

′i
q ) sin(2δi − 2θi)

2X
′i
d X

′i
q

qie =− (V i)2

X
′i
d

+
EiqV

i cos(δi − θi)
X

′i
d

− EidV
i sin(δi − θi)
X ′i
q

+
(V i)2(E

′i
d − E

′i
q )(cos(2δi − 2θi)− 1)

2X
′i
d X

′i
q

where Eiq , E
i
d, V i, θi, X

′i
d , and X

′i
q are the q-axis stator emf,

d-axis stator emf, terminal bus voltage (magnitude), the bus
phase angle, d-axis transient reactance, and q-axis transient
reactance of generator i respectively. The dynamics of the
two stator emfs Eiq and Eid are further described by:

T
′i
do

dEiq
dt

=Eifd − Eiq + (Xi
d −X

′i
d )Iid

T
′i
qo

dEid
dt

=− Eid + (Xi
q −X

′i
q )Iiq

where Eifd is the excitation field voltage controlled by
the automatic voltage regulators (AVRs) and power system
stabilizers (PSS), T

′i
do and T

′i
qo are the open circuit d- and

q-axis time constants, Xi
d and Xi

q are the d- and q-axis
synchronous reactance, and Iid and Iiq are the d- and q-
axis stator currents for generator i respectively. Finally, we
have the following equations to link the stator currents to the
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Fig. 2. The control block diagram of our automatic voltage regulator (AVR), with one exciter: SEXS PTI [20] and one stabilizer: STAB1 [20]

terminal voltage and the stator emfs:

Iid =
V i cos(δi − θi)− V iq

X
′i
d

, Iiq =
V i sin(δi − θi) + V id

X ′i
q

B. Automatic Voltage Regulation Model (AVR)

Our generator model implements a simplified excitation
system model SEXS PTI [20] combined with a speed-
sensitive stabilizing model STAB1 [20]. Figure 2 shows the
combined block diagram for all of the transfer functions in
Laplace form. The circuit requires three external inputs: the
terminal voltage V , the steady-state terminal voltage refer-
ence Vref , and the angular velocity/speed of the rotor angle
ω. The excitation circuit consists of three time constants: TA
and TB in the lead-lag block and Tfd in the amplification
block, one amplification gain parameter Ka and two limits
Efd and Efd to avoid over-excitation. The speed-sensitive
stabilizing circuit consists of 5 time constants: Tw in the
wash out block and T1 to T4 in the two lead-lag block, one
wash out gain constant Ks, and again two limits Vs and Vs
to limit the stabilizing signal Vs.

IV. FINITE DIFFERENCE DISCRETIZATION

To optimize the 2-Axis model with the AVR containing or-
dinary differential equations, one method is to use direct time
discretization method to convert the continuous optimization
problem into a finite-time discretized nonlinear program.
We follow previous work [14] and perform an implicit
trapezoidal discretization to discretize the equations over a
discrete horizon (1 ≤ t ≤ T ). This approach discretizes the
first-order differential equation

df(t)

dt
= k(t)

over a finite discrete time horizon 1 ≤ t ≤ T with uniform
time step ∆ by converting it into its integral form∫ t+∆

t

df(t)

dt
dt = f(t+ ∆)− f(t) =

∫ t+∆

t

k(t)dt

and using the Trapezoidal rule as follows:∫ t+∆

t

k(t)dt ≈ ∆

2
[k(t) + k(t+ ∆)]

The same approximation is repeated to cover the required
horizon and gives

f(t+ 1)− f(t) ≈∆

2
[k(t) + k(t+ 1)], 1 ≤ t ≤ T − 1

We now show the discretized formulations for building our
optimization model. We append t within brackets to variables
to denote the values of the variables at time step t and use
t|t=n to refer to a specific time step n.

A. 2 Axis Model: Swing equations

The Swing equations then become

δi(t+ 1)− δi(t)− ∆

2
(ωi(t+ 1) + ωi(t)) = 0 (2)

ωi(t+ 1)− ωi(t)− ∆

2
(ai(t+ 1) + ai(t)) = 0 (3)

ai(t)− ω0

2Hi
(pim − pie(t)) = 0 (4)

for all generator i ∈ G and all time steps t ∈ [1..T −1]. The
initial boundary conditions at t = 1 is given by

ωi(t|t=1) = 0, ai(t|t=1) = 0,pim = pie(t|t=1) ∀i ∈ G. (5)

by assuming steady state holds in the first time step (t =
1) and mechanical power is in balance with steady-state
electrical power. To ensure rotor stability, one acceptable
criteria [14] is to ensure that the rotor angles are not too
far from each others before and after the disturbance period.
One typical approach is to define a reference angle δr(t)
representing the angle for the center of inertia (COI):

δr(t) =

∑
i∈GH

iδi(t)∑
i∈GH

i
, 1 ≤ t ≤ T. (6)

For all generators i, the stability constraints then become

−δ ≤ δi(t)− δr(t) ≤ δ, {1} ∪ {t : Tk ≤ t ≤ T} (7)

where Tk is an adjustable time constant representing the
earliest time that the constraint has to be enforced (after
switchings), and δ is an adjustable parameter representing
the maximum rotor angle separation. In the literature, δ is
usually set to π/2 (rad).

B. 2Axis Model: Generator Power

The generation active and reactive power can be easily
extended to the discretized space by repeating the equations
to all time steps t. For all i ∈ G, t ∈ [1..T ]:

pie(t) =
Ei

q(t)V i(t) sin[δi(t)− θi(t)]
X

′i
d

+
Ei

d(t)V i(t) cos[δi(t)− θi(t)]
X

′i
q

+ (8)

[V i(t)]2(X
′i
d −X

′i
q ) sin[2δi(t)− 2θi(t)]

2X
′i
d X

′i
q

qie(t) =− [V i(t)]2

X
′i
d

+
Ei

q(t)V i(t) cos[δi(t)− θi(t)]
X

′i
d

− Ei
d(t)V i(t) sin[δi(t)− θi(t)]

X
′i
q

(9)

+
[V i(t)]2[E

′i
d (t)− E

′i
q (t)]{cos[2δi(t)− 2θi(t)]− 1}

2X
′i
d X

′i
q



C. 2Axis Model: Stator EMF Dynamics
Similarly, the d- and q-axis stator emf dynamics will be

discretized to:

T
′i
doE

′i
q (t) = Eifd(t)− Eiq(t) + (Xi

d −X
′i
d )Iid(t) (10)

T
′i
qoE

′i
d (t) = −Eid(t) + (Xi

q −X
′i
q )Iiq(t) (11)

Iid(t) =
V i(t) cos[δi(t)− θi(t)]− V iq (t)

X
′i
d

(12)

Iiq(t) =
V i(t) sin[δi(t)− θi(t)] + V id (t)

X ′i
q

(13)

for all i ∈ G, t ∈ [1..T ], with the following trapezoidal rule
to approximate the rate of the emf dynamics:

Eiq(t+ 1)− Eiq(t)−
∆

2
[E

′i
q (t+ 1) + E

′i
q (t)] = 0 (14)

Eid(t+ 1)− Eid(t)−
∆

2
[E

′i
d (t+ 1) + E

′i
d (t)] = 0 (15)

for all i ∈ G, t ∈ [1..T−1]. Similarly, we have the following
initial boundary conditions at t = 1:

E
′i
d (t|t=1) = 0, E

′i
q (t|t=1) = 0, ∀i ∈ G. (16)

by assuming steady state in the first time step.

D. Automatic Voltage Regulator: Exciter
We now show how we transform the transfer functions (in

Laplace domain) in our AVR into time-domain differential
equations for optimization. Let O(s)/O(t) and I(s)/I(t) be
the output function and input function in the Laplace (s) /
time (t) domain. All of the transfer functions appearing in
Figure 2 can be written in abstract form as1:

Km + sTm
Kn + sTn

=
O(s)

I(s)

⇐⇒ s(I(s)Tm −O(s)Tn) = O(s)Kn − I(s)Km

⇐⇒ d

dt
(I(t)Tm −O(t)Tn) = O(t)Kn − I(t)Km

⇐⇒ dX(t)

dt
= O(t)Kn − I(t)Km,

where X(t) is defined as I(t)Tm − O(t)Tn. For lead-lag
blocks and washout blocks, we have Km = Kn = 1 and
Kn = 1,Km = 0. These dynamic equations reduce to:

dX(t)

dt
= O(t)− I(t), and

dX(t)

dt
= O(t)

For excitation amp. blocks, we have Kn = 1, Tm = 0:

dX(t)

dt
= O(t)−KmI(t), s.t. X(t) = −TnO(t)

As a result, the following equations describe the excitation
circuits:

T
′i
fdE

′i
fd(t) = −Eifd(t) +Ki

aE
i
ll(t) (Gain) (17)

X
′i
ll (t) = Eis(t)− Eill(t) (Lead-Lag) (18)

Xi
ll(t) = T iBE

i
ll(t)− T iAEis(t) (Lead-Lag) (19)

Eis(t) = V iref − V i(t) + V is (t) (Summation) (20)

1The equivalence conditions described are based on the common assump-
tion that the transfer functions are given with zero initial condition.

for all i ∈ G, t ∈ [1..T ], with the following trapezoidal rule
to approximate the dynamics:

Eifd(t+ 1)− Eifd(t)−
∆

2
[E

′i
fd(t+ 1) + E

′i
fd(t)] = 0 (21)

Xi
ll(t+ 1)−Xi

ll(t)−
∆

2
[X

′i
ll (t+ 1) +X

′i
ll (t)] = 0 (22)

for all i ∈ G, t ∈ [1..T − 1]. Again, we have the following
initial boundary conditions at t = 1:

E
′i
fd(t|t=1) = 0, X

′i
ll (t|t=1) = 0 (23)

for all i ∈ G. The only equipment we remain to convert
to the time domain is the non-windup limiters on the gain
block. The limiters will change and set the differential dEfd

dt
and the state Efd when the state goes lower/higher than the
lower/upper bounds, as follows:

dEfd

dt
= 0 ∧ Efd = Efd, if Efd ≥ Efd ∧

dEfd

dt
≥ 0

dEfd

dt
= 0 ∧ Efd = Efd, if Efd ≤ Efd ∧

dEfd

dt
≤ 0 (24)

To implement the limiter (in time-domain) for optimization,
binary/integer variables would need to be used, introduc-
ing significant computational complexity and making the
approach intractable. One alternative is to enforce stricter
bounds:

Eifd ≤ Eifd(t) ≤ Eifd, ∀i ∈ G, 1 ≤ t ≤ T. (25)

The resulting optimization will be more conservative, as it
requires control settings that satisfy the tightened bounds.

E. Automatic Voltage Regulator: Stabilizer

By using similar transformation technique, we will have
the following equations to describe our stabilizer (PSS):

X
′i
w(t) = V iw(t) (Wash out) (26)

Xi
w(t) = Ki

sω
i(t)− T iwV iw(t) (Wash out) (27)

X
′i
ll1(t) = V iw(t)− V ill1(t) (Lead-Lag 1) (28)

Xi
ll1(t) = T i3V

i
ll1(t)− T i1V iw(t) (Lead-Lag 1) (29)

X
′i
ll2(t) = V ill1(t)− V ill2(t) (Lead-Lag 2) (30)

Xi
ll2(t) = T i4V

i
ll2(t)− T i2V ill1(t) (Lead-Lag 2) (31)

for all i ∈ G, t ∈ [1..T ], with the following trapezoidal rule:

Xi
w(t+ 1)−Xi

w(t)− ∆

2
[X

′i
w (t+ 1) +X

′i
w (t)] = 0 (32)

Xi
ll1(t+ 1)−Xi

ll1(t)− ∆

2
[X

′i
ll1(t+ 1) +X

′i
ll1(t)] = 0 (33)

Xi
ll2(t+ 1)−Xi

ll2(t)− ∆

2
[X

′i
ll2(t+ 1) +X

′i
ll2(t)] = 0 (34)

for all i ∈ G, t ∈ [1..T − 1], with similar initial conditions:

X
′i
w(t|t=1) = 0, X

′i
ll1(t|t=1) = 0, X

′i
ll2(t|t=1) = 0 (35)

for all i ∈ G. We now show how to handle the limiters in the
stabilizers. These are windup limiters (also called saturation
limiters) for filtering and modifying signal Vs before inputing
to the exciters. The limiters will change and set the state



Vs when the input state Vll2 goes lower/higher than the
lower/upper bounds, as follows:

Vs = Vs, if Vll2 ≥ Vs
Vs = Vs, if Vll2 ≤ Vs
Vs = Vll2, otherwise

To implement this limiter for optimization and avoid integer
variables, we again enforce the stricter bounds:

V i
ll2(t) = V i

s (t), V i
s ≤ V i

s (t) ≤ V i
s , ∀i ∈ G, 1 ≤ t ≤ T. (36)

F. Power Network: AC Power Flow
It remains to link the AC power flow equations to the

generator dynamics. The model states the active and reactive
flow balance equations∑

m∈G(n)

pme (t)−
∑

m∈O(n)

pml − [V n(t)]2gns =
∑

m∈N(n)

pnm(t)∑
m∈G(n)

qme (t)−
∑

m∈O(n)

qml + [V n(t)]2bns =
∑

m∈N(n)

qnm(t)

(37)

for all bus n ∈ N , where pme (t) and qme (t) are the active
and reactive power of generator m, pml and qml are the active
and reactive demands of load m, [V n(t)]2gns and [V n(t)]2bns
describe the active and reactive power drawn by the bus shunt
(gns + ibns ) at bus n, and pnm(t) and qnm(t) are the active
and reactive power flow from n to m (i.e. bus injections). We
use G(n), O(n), and N(n) to denote the set of generators,
loads, and neighboring buses of bus n. In this work, we
simplify our experiments and use constant active and reactive
power loads to demonstrate our techniques. Note that we can
easily extend our model with: impedance, current, or even
dynamic loads (based on voltage/frequency) by adjusting and
replacing the two terms: pml and qml . The AC power flow
equations describing the power flow of a transmission line
are then written as:

pnm(t) = znm(t){ gnm
T lnm

[V n(t)]2−

V n(t)V m(t)

Trnm
[gnm cos(Θnm(t)) + bnm sin(Θnm(t))]}

qnm(t) = znm(t){−bnm + (lcnm)/2

T lnm
[V n(t)]2−

V n(t)V m(t)

Trnm
[gnm sin(Θnm(t))− bnm cos(Θnm(t))]}

s.t. Θnm(t) = θn(t)− θm(t) + φnm (38)

where gnm + ibnm is the line admittance, lcnm is the line
charge, and znm(t) is an on-off variable to determine whether
line (n,m) is opened or closed. We assume znm(t) = zmn(t)
for every time step t. During implementation, they will be
implemented as the same variable. φnm denotes the constant
phase shift angle parameter (in radians) if transmission line
(n,m) has a phase shift transformer. Note that phase shifting
is directional, and therefore φnm = −φmn. Parameter
Trnm = Trmn denotes the off-nominal turns ratio of a
transformer on line (n,m). Trnm will be set to 1 if no
transformer exist. T lnm is set to [Trnm]2 if the transformer
gains voltage from bus n to m; and set to 1 otherwise.
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Fig. 3. Transient Stable Line Switching Algorithm

G. Power Network: Operational Limits

The active and reactive generation and line thermal/power
limits for the initial steady state are given by

pie ≤ pie(t|t=1) ≤pie ∀i ∈ G (39)

qie ≤ qie(t|t=1) ≤qie ∀i ∈ G (40)

[pnm(t|t=1)]2 + [qnm(t|t=1)]2 ≤[Snm]2 ∀(n,m) ∈ L (41)

where Snm denotes the maximum apparent power. We also
enforce the following limits across all time steps t:

V n ≤ V n(t) ≤V n, ∀n ∈ N (42)

−θ ≤ δn(t)− θn(t) ≤θ, ∀n ∈ G (43)

−θ ≤ θn(t)− θm(t) ≤θ, ∀(n,m) ∈ L (44)

V. TRANSIENT STABLE LINE SWITCHING

This section presents our optimization model for transient-
stable transmission line switching.

A. Line switching routine with transient stability

Figure 3 shows an automatic routine utilizing our proposed
model to find the best transmission line to switch without
causing transient instability.

1) The routine executes AC Optimal Power Flow algorithm
(AC-OPF) to determine the current system state.

2) Based on the computed steady state, it finds the best
line to switch (e.g., based on costs/congestions), e.g.,
by solving Model 1 in [1].

3) It checks whether the switched line reduces generation
costs.

4) It then executes our model to search for a feasible
optimal control solution to ensure finite-time transient
stability when switching the proposed line.

5) It checks if the solution is transient stable and opera-
tionally acceptable.

6) If no feasible solution is found, the line will be dis-
carded.



B. Transient optimization model

We now present the optimization model for Step 4:

Transient Stable Line Switching (TSLS)

min
∑
n∈G

∑
t∈[1,T ]

[t(an(t))]2 (O1)

s.t. Swing equations & stability: (2)− (7)
Generator power: (8)− (9)
Stator EMF dynamics: (10)− (16)
Excitation dynamics: (17)− (25)
PSS dynamics: (26)− (36)
AC network power flow: (37)− (38)
Operational limits: (39)− (44)
Active power flexible region: |pie(t|t=1)− piT | ≤ rpiT
Reactive power flexible region: |qie(t|t=1)− qiT | ≤ rqiT
Re-dispatch cost constraint: c ≤ (1 + γ)cT

where piT and qiT are the active and reactive power of
generator i in step 1, c and cT are total generation costs of
the current optimization problem and the generation costs
in step 1. r and γ are adjustable parameters governing
the maximum generator resources and maximum increase
in generation costs allowed to achieve transient stability.
Since our model could only guarantee stability within the
computed horizon, solutions obtained from the model may
not guarantee to be stable at any future time steps. One way
to consider the stability continuity is to restrict our attention
to solutions that provide enough damping and reduce the
magnitude/amplitude of transient swings over time. The
objective function (O1) minimizes the sum of time-weighted
rotor angle accelerations, where the time-weights ensure that
the solutions have smaller swings as time increases.

VI. COMPUTATIONAL CASE STUDY

This section evaluates the TSLS optimization model on the
classical IEEE 10-machine 39-bus systems [11], [12] with
the network data from Matpower [23]. The dynamics data
(i.e., generator machine and AVR parameter) are obtained
from a recent release (November 2013) of the IEEE PES
Task Force on benchmark systems for stability controls [24].
To increase the difficulty of the test case, the computational
results consider size congested scenarios from the NESTA
test systems [13] (case nesta case39 epri api) which
increase the load by 50%, 70%, 80%, 85%, 88%, and 90%.
To ease comparisons between different settings, the experi-
ments assume that the proposed line switching occurs at time
0.002s. The TSLS model then considers a 4 second horizon,
with stability parameters: Tk = 3s and δ = π

2 . The switching
routine in Figure 3 is implemented in AMPL [25] and uses
BONMIN 1.8.4 [26] with default MA27 [27] linear solver
for steps 1 and 2. The TSLS optimization model in step
4 uses IPOPT 3.12.6 [28] compiled with an advanced linear
solver HSL MA77, designed for large scale systems by using
an out-of-core multi-frontal method [27]. The computational
studies explores two versions of the TSLS optimization
model. The TSLS-G model use generator dispatches as its

TABLE I
RESULTS FOR THE TSLS-G MODEL: DISPATCH DISTANCE

(MW/MVAR), COST DIFFERENCE ($), AND RUNTIME (SEC).

Congestion r = 1%, γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime

50 (4,14) 6.48/4.64 0.67 (0.02%) 81.10
70 (16,17) 13.98/7.59 1.84 (0.04%) 198.73
80 (16,17) 21.03/6.04 7.93 (0.15%) 96.83
85 (2,25) 7.96/5.58 0.70 (0.01%) 79.07
88 (16,17)2 10.96/5.69 3.76 (0.06%) 294.01
90 No SW4 Converge Err. - -

only control variables, while TSLS-PSS uses PSS controls (in
the AVR circuit) instead of generation dispatches. Since time
constants T1 to T4 (in PSS) are adjustable [29], the major
difference between the TSLS-G and TSLS-PSS models is
the fact that T1 to T4 are constants in TSLS-G and control
variables in TSLS-PSS. In the experiments, T1 and T2 takes
their values within [2, 5], and T3 and T4 within [0.02, 0.08]
unless specified otherwise.

a) Evaluation of the TSLS-G Model: Table I presents
the computational results for the TSLS-G model, including
the proposed line for switching, the total CPU runtime, and
two metrics to measure how much generation resource the
model is used to achieve transient stability. The first metric
is the generation differences (in L2 norm, MW/MVAR) with
respect to the steady state:

Active power (MW):
√∑
n∈G

(pie(t|t=1)− piT )2

Reactive power (MVAR):
√∑
n∈G

(qie(t|t=1)− qiT )2

The second metric is the increased cost (in dollars and
percentage) due to the change in dispatch. When the first
line proposed for switching (by Step 2 in Figure 3) is not
transient stable, the table indicates the number of lines being
checked in superscripts after the line results (see for instance
the 88% case). Results are presented for r = 1%, γ =
0.2%. For low to mild congestion settings, the TSLS-G
model verifies that the system with small changes to the
generator dispatch (with costs ≤ 0.2%) ensures that the
system is not unstable over the finite horizon considered
after the line switching (i.e. all solved to locally optimal
solution). When the congestion reaches 88%, the TSLS-G
model could not find any stable generation dispatch within
the 1% generation limit (i.e. infeasible), and therefore, the
switching routine recommended the second best transmission
line (16,17) to perform switching. When congestion level
increases to 90%, the TSLS-G model could not find any
transient-stable dispatches.

Solutions of the TSLS-G model are only stable in the fixed
finite-time horizon and may become unstable in later time
periods (i.e. after 4 sec). To verify the long-term stability of
the TSLS-G solutions, a transient simulation on PowerWorld
simulator (ver. 17) [20] (at 10−3 sec step size) was run on
the 88% congestion case and initialized with the dispatch
of the optimization model on opening line (16,17). Figure
4 presents the results. In particular, Figure 4 indicates that
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Fig. 4. TSLS-G Model: Rotor angles (deg) and terminal voltage (p.u.) for
88% congestion level (r = 1%, γ = 0.2%) on opening line (16,17).

TABLE II
RESULTS FOR THE TSLS-PSS MODEL: DISPATCH DISTANCE

(MW/MVAR), COST DIFFERENCE ($), AND RUNTIME (SEC).

Congestion No dispatch change: r = 0, γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime

50 (4,14) 0.00/0.00 0.00 (0.00%) 1206.84
70 (16,17) 0.00/0.00 0.00 (0.00%) 496.97
80 (16,17) 0.00/0.00 0.01(0.00%) 511.07
85 (2,25) 0.00/0.00 0.00 (0.00%) 239.08
88 (2,25) 0.00/0.00 0.00 (0.00%) 417.57
90 No SW4 Converge Err. - -
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Fig. 5. TSLS-PSS Model: Rotor angles (deg) and terminal voltage (p.u.)
with no dispatch change for opening line (2,25).Top: congestion level 85%,
bottom: congestion level 88%

the TSLS-G model becomes unstable at about 11 seconds.
Clearly, using only generator dispatch as control variables
may not be sufficient to ensure long-term stability.

b) Evaluation of the TSLS-PSS Model: Table II
presents the results of the TSLS-PSS model. The optimiza-
tion model ensures the network is stable over the finite hori-
zon for the recommended line switching and all congestion
levels, except 90%. The simulation results, initialized with
the AVR damping control, are shown in Figures 5 for con-
gestion levels at 85% and 88%. They show a nice damping
of rotor angles and stable voltage magnitudes, demonstrating
the benefits of the model. Controlling the exciter/stabilizer
settings is thus critical in using transmission line switching
in highly congested situations and is a promising avenue for
managing congestion.

c) Optimization Versus Simulation: It is interesting to
compare the results of the TSLS-PSS model with a Pow-
erWorld [20] simulation on the same case studies, as the
TSLS-PSS uses a conservative approximation of the limiters
and employs a discretization with fixed steps. We validate
the TSLS-PSS model on coarser and fine discretization steps

TABLE III
RESULTS FOR THE RANGE-RESTRICTED TSLS-PSS MODEL: DISPATCH

DISTANCE (MW/MVAR), COST DIFFERENCE ($), AND RUNTIME (SEC).

Congestion No dispatch change: r = 0%, γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime

50 (4,14) 0.00/0.00 0.00 (0.00%) 712.41
70 (16,17) 0.00/0.00 0.00 (0.00%) 169.03
80 (16,17) 0.00/0.00 0.01 (0.00%) 350.82
85 (2,25) 0.00/0.00 0.00 (0.00%) 117.08
88 (2,25) 0.00/0.00 0.00 (0.00%) 616.84
90 No SW4 Converge Err. - -

TABLE IV
RUNTIME (SEC), GENERATION COST DIFFERENCE (%), AND ERRORS

(DEG), WITH NO DISPATCH CHANGE (r = 0%, γ = 0.2%)

Time step Model 85% 88%
(sec) var. num. Error Cost diff. Runtime Error Cost diff. Runtime

0.160 14,473 0.003 0.00% 64.27 0.009 0.00% 106.95
0.125 18,246 0.002 0.00% 59.04 0.005 0.00% 389.87
0.080 27,948 0.001 0.00% 117.08 0.002 0.00% 616.84
0.040 54,898 0.001 0.00% 203.10 0.003 0.00% 4979.84

ranging from 0.160s to 0.040s. Transient simulations in
PowerWorld are run with the second order Runge-Kutta
integration method (RK) with 10−3 second step size. Pow-
erWorld is known to have potential numerical issues when
time constant parameters are too small or gains are too large
[30]. These difficulties were encountered in the case study
when the lead-lag ratios T1/T3 or T2/T4 were large. To
circumvent this difficulty, we added a constraint in the model
to restrict the max ratio to 60. Table III updates the previous
results with the additional restriction. The results are similar
in nature to the earlier results.
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Fig. 6. Error functions on rotor angles (deg) and terminal voltages (p.u.)
for 88% congestion (r = 0%, γ = 0.2%) and discretization steps of 0.160s
(top) and 0.040s (bottom).

We are now in a position to compare the TSLS-PSS
model and the simulation results seeded with the generator
dispatch and AVR values found by the optimization model.
The results are given in Table IV which, for each time step,
reports the number of variables in the optimization, the CPU
runtime (sec), the cost difference (in %), and a metric to
measure the accuracy of the optimization results with respect
to the simulation outcomes. The accuracy metric is expressed
in terms of δns (t) and δno (t) which denote the rotor angle
obtained by the simulation and the (interpolated) rotor angle
obtained by optimization for generator n at simulated time



t ∈ T s respectively. It computes the average errors (L2 norm)
on the rotor angles (deg), i.e.,

1

|G||T s|
∑
n∈G

√∑
t∈T s

[δns (t)− δno (t)]2

This accuracy metric represents the average errors of rotor
angles in degrees, per generator machine and time point.
Figure 6 shows also four error plots that report the difference
between optimization and simulation on rotor angles (deg.)
and generator terminal voltages (p.u.) for the 88% cases.
Table IV and Figure 6 show the TSLS-PSS model has high
accuracy with respect to simulation, with an average error
in the scale of 10−3 deg. The error functions further show
finer discretization decrease the worst-case error to 2 deg.

VII. CONCLUSION

This paper proposed an automatic control and optimization
routine to address transient stability during transmission line
switchings in highly congested situations. The optimiza-
tion model is based on trapezoidal discretization on the
differential equations for the 2-axis generator model with
an AVR circuit, and uses the stability/exciter parameters
as control variables to drive the system towards transient
stability. In particular, the objective function minimizes the
sum of the time-weighted rotor angle accelerations, to ensure
increasingly smaller swings as time increases. Experimental
results show that the PSS parameters are critical in damping
the system to ensure long-term stability and that the test cases
can be solved within minutes for the IEEE 10-machine 39
bus system. The model was validated against the PowerWorld
simulator and is shown to have an accuracy in the order of
10−3 (average degree error) in rotor angle computations. Fu-
ture work includes studying on a longer horizon to guarantee
stability and implementing higher order models.
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